Invariance, equivariance, and
iInductive bias in deep learning

Domenico Tortorella

Computational Intelligence and Machine Learning (CIML)

Department of Computer Science, University of Pisa

Outline

* Introduction

* A familiar example: CNNs

* A primer on groups and symmetries

* Building invariant/equivariant neural networks
* Invariance/equivariance in action: Sets

* Invariance/equivariance in action: Graphs

* Wrap up

A familiar example: CNNs

A\

Neural networks

DR

S

RN
05 o“o“oﬂo ov
Y \V/

S

=

y

@
J
1IN

O\
»
b,

AR
REESE

4 KT N

D YAVADAAVANVT ”h

/M?

44% v@h i

WIXERL X
\«\3«2
A\

‘

%

\

<

=

3

o
W

\v«»(vtf);«»ﬂ
N

%
A

Yy

ions x~ o(W x + b)

* Composition of simple funct

* Trained by minimizing a loss over weights W, b

Image recognition

car

SEGMENTATION CLASSIFICATION

* Images, instead of vectors

* Functions acting on tensors Rvmx

Convolutional Neural Networks

P C3:f maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 e

i e g4 10

G-19N97

* Composition of simple functions x =» o(|W = x|+ b))

- plus sub-sampling, optionally a final MLP
* Trained by minimizing a loss over weights W, b

(onvo 1.

* Filter W acts locally in
each pixel and its
I neighbourhood, sliding

44444 across image

66666

* Formally,

* Action of W » x on image)
& Xij= Z-ksi’sk Z-ksj’sk W) Xi+i),+7)

Convo e

 Convolution is in fact
weight sharing

* A linear function

Rnxmxd RN Rn’xm’xd’

but with way less than
nxmxdxn’xm’xd’ parameters

* Convolution viewed as
matrix product

Translation equivariance

* Why doing convolution?

- Equivariance to image translations

ja yu
W * /))

Y, Y,

Other equivariances

 What about other transformations?

2y

_ - - T
Reflections M M
?&”M) 3) \%ﬁ"*

- Rotations

* CNNs are not equivariant w.r.t. them

- Do data augmentation (i.e. learn equivariance/invariance)

— Change model to include this inductive bias! [G-CNN]

A primer on groups and symmetries

* A set Gwith a binary operation - satistying

- (Associativity) a-(b-¢) = (a-b)-¢ forall a,b,c € G
- (Identity) 3e € G suchthate-a=a-¢=a
- (Inverse) dale G suchthatala=a-al=¢
— (Closure) a, b€ G = a-b € G [for sub-groups]
* Transformations on objects “behave” like a group

Group actions

* How x € S Is transformed by g € G, X - ¢.X
* An action must satisfy

- (Identity) e.x = X

— (Compatibility) g.(h.x) = (¢-b).x

Invariance, equivariance

* W.r.t. a functionf: S-S’

* Invariance: transformations do not affect result
f(g.x) = (%)
* Equivariance: output transforms as input

f(g.x) = ¢.f(x)

* Such functions preserve “symmetries” in data

Bo@ s 8- = pEoae

— output

input —> | equivariant, — ... —> equivarianty

invariant — output

* Composition of equivariant layers

- Optionally, a final invariant layer

- Point-wise activations o(-), and channel-wise
functions (e.g. MLPs) are invariant/equivariant

Invariance/equivariance in action: Sets

Tasks on (multi-)sets

* Element classification/regression

= {x1, X2, oo, Xa} = {V1, V2, ..., Y}
* Set classification/regression
= {X1, X2, o0, Xn} =V
* Early approaches used RNN

- What about element order?

Permutation group

* Group S, of all bijective functions {1..n} = {1..n}
— Group operation Is function composition

* A e S,acts by swapping elements in a sequence
— T1.{X1, X2, X3, Xa, X5) = (X1, X3, X4, X2, X5)

* A neural network for sets should be invariant/
equivariant w.r.t. permutations

fleti g 1 e

* Two linear equivariant operations

—Identity 1/1/1/1 1 10 0/ 0 0
11111 1 01 0, 0|0
- Sum of all elements =@ 11111 Bloo 10 o0
11111 1 0O 001 0
11111 1 00,0 0 1

* Only one linear invariant function

- Sum of all elements (aggregation)

Jeep sets

* DeepSets combines equivariant functions in layers, plus
invariant in final (also, MLP)

— Multi-channel, like CNNs

* Other permutation-invariant functions can be used to
perform aggregation (max, mean, ...)

- but only sum is linear

Invariance/equivariance in action: Graphs

* A set of vertices Vand a set of edges E < VxV

* Vertices and edges may have labels

* Edges can be represented by an adjacency matrix

Graph iIsomorphism

* Changing vertex o
“numbering” does not = ‘o ®
change graphs O

* But the adjacency matrix

O 1 061 0 0O 0 1 0|1
does change! 1011 0 0o 0 0 0 1
O 1 0 0 0 # 1 0/0 1 1
111 0 0 1 © 01 0 0
O 0601 0O 1 1|1 00

Graph convolution networks

* Layers act locally on vertex neighbourhood

- Reordering vertices do not affect encoding

* At most as representative as 2-WL isomorphism test

- Higher order equivariant networks are provably more
representative (k-order = k-WL)

Message-passing Nnetworks

* Message-passing layers consisting of

- Neighborhood aggregation: a © = Accrecate”({h 2 | u € N(v)})
- Context combination: h © = ComINe®(h P, a 1)
The two steps can also be implemented by a single function

A final readout layer to encode the graph: h_, = Reabout({h ® | v € V})

According to the different choice of the three functions, we can have
different Graph Convolutional Networks

Invariant and equivariant layers

* Given a permutation group Sy, a linear function
- L: R™ = R s equivariant iff L(r.x) = m.L(X) for all m € S,, x € R™
- L: R™ > Ris invariant iff L(rt.x) = L(X) for all m € S, x € R™

» Specifically, we consider the symmetric group S ,

l.e. the group of all permutations of 1..n, acting on k-order tensors
In the following way:

E)
Z
I
X
[]
)
~

1

Invariant and equivariant nets

T we) L, w) O ww) L, mw) 0 =) .. L, wm) O mwm) MLP mm) T/

* Take as input a tensor encoding of the graph and its vertex/edge features

- e.g., the adjacency matrix (i.e. 2-tensor) A, a 3-tensor T, = [, a 3-tensor T[j_, = l[.j, their composition, etc.

* Composition of equivariant layers and point-wise non-linearities (can be of different
orders), with an invariant final layer for invariant networks (optionally followed by a MLP)

* Produce vertex-level representations (equivariant network), or graph-level
representations (invariant network)

Basis for inv't and equiv't layers

* Since L 1s a linear operator, 1t can be expressed as a
linear combination of basis operators

* Invariant and equivariant operators can be represented
as R and R matrices acting on R™ vectors with the

standard matrix product

* Invariance/equivariance = weight sharing,
way less than n/n*¥ parameters:
- invariance = Lx =L (m.x) =L =L, forallim

- equivariance = m(Lx)=L(mx) =1L, ., =L forally,m

(i),

Basis for inv't and equiv't layers

« Consider multi-indices i = (i, ..., {,) € {1..n},
with n(i) = (n(i)), ..., n(i))) for all permutations T € S,

- Define the equivalence relationa ~ b iff a. = a; e b = bj.,
l.e. they have the same equality patterns: (1,2,1) ~ (3,4,3)

* The equivalence classes y € {1..n}*/~ are closed under
group S, actions: a ~ m(a) forall me S, a € {1..n}

- An orthogonal basis is defined as B_ Y = [a € y], with dimension [(k),
l.e. the number of different partitions of a k-element set

- Biases can be added (invariant/equivariant C_¥ constants),
and a d-dimensional feature channel can be appended

Wrap-up

Conclusions

* Data has symmetries
- e.g. iIsometries don’t change object category

* Traditionally, learnt by training with data augmentation

* Include symmetries in inductive bias by using
equivariant neural networks

- Reduce parameters, data

References

* Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢ (2021). Geometric
Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. Retrieved from

 Tan Goodfellow, Yoshua Bengio, Aaron Courville (2015). Deep learning. MIT Press.
Available at

* Cohen, T. S., & Welling, M. (2016). Group Equivariant Convolutional Networks. In
Proceedings of the 33rd International Conference on Machine Learning (Vol. 48,
pp. 2990-2999). Retrieved from

* Tai, K. S., Bailis, P., & Valiant, G. (2019). Equivariant transformer networks. In
Proceedings of the 36th International Conference on Machine Learning (Vol. 97,
pp. 6086-6095). Retrieved from

https://arxiv.org/abs/2104.13478
http://www.deeplearningbook.org/
http://proceedings.mlr.press/v48/cohenc16.html
http://proceedings.mlr.press/v97/tai19a.html

References

* Xu, K., Hu, W,, Leskovec, J., & Jegelka, S. (2019). How Powerful are Graph Neural
Networks? Proceedings of the International Conference on Learning Representations
(2019). Retrieved from

* Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M.
(2011). Weisfeiler-Lehman Graph Kernels. The Journal of Machine Learning Research,
12, 2539-2561.

* Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J.
(2017). Deep Sets. Advances in Neural Information Processing Systems 30 (NIPS 2017)
(pp. 3391-3401). Retrieved from

* Wagstaff, E., Fuchs, F. B., Engelcke, M., Posner, 1., & Osborne, M. (2019). On the
Limitations of Representing Functions on Sets. Proceedings of the 36th International
Conference on Machine Learning (pp. 6487-6494). Retrieved from

http://arxiv.org/abs/1810.00826
https://doi.org/10.1.1.232.1510
http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1901.09006

References

* Maron, H., Ben-Hamu, H., Shamir, N., & Lipman, Y. (2019a). Invariant and Equivariant
Graph Networks. Proceedings of the International Conference on Learning Representations
(2019). Retrieved from

* Maron, H., Fetaya, E., Segol, N., & Lipman, Y. (2019b). On the Universality of Invariant
Networks. Proceedings of the 36th International Conference on Machine Learning (pp.
A4363-4371). Retrieved from

* Maron, H., Ben-Hamu, H., Serviansky, H., & Lipman, Y. (2019c). Provably Powerful Graph
Networks. Retrieved from

* Micheli, A. (2009). Neural Network for Graphs: A Contextual Constructive Approach. IEEE
Transactions on Neural Networks, 20(3), 498-511.

http://arxiv.org/abs/1812.09902
http://arxiv.org/abs/1901.09342
http://arxiv.org/abs/1905.11136
https://doi.org/10.1109/TNN.2008.2010350

