Invariance, equivariance, and inductive bias in deep learning

Domenico Tortorella

Computational Intelligence and Machine Learning (CIML)
Department of Computer Science, University of Pisa

Outline

- Introduction
- A familiar example: CNNs
- A primer on groups and symmetries
- Building invariant/equivariant neural networks
- Invariance/equivariance in action: Sets
- Invariance/equivariance in action: Graphs
- Wrap up

A familiar example: CNNs

Neural networks

- Composition of simple functions $\mathbf{x} \mapsto \sigma(\mathbf{W} \mathbf{x}+\mathbf{b})$
- Trained by minimizing a loss over weights W, b

Image recognition

SEGMENTATION

CLASSIFICATION

- Images, instead of vectors
- Functions acting on tensors $\mathbb{R}^{n \times m \times d}$

Convolutional Neural Networks

- plus sub-sampling, optionally a final MLP
- Trained by minimizing a loss over weights W,b

Convolution (2D)

- Filter W acts locally in each pixel and its neighbourhood, sliding across image
- Formally,
- Action of $\mathbf{W} \star \mathbf{x}$ on image

$$
\mathbf{x}_{i, j}^{\prime}=\sum_{-k \leq i^{\prime} \leq k} \sum_{-k \leq j^{\prime} \leq k} \mathbf{W}_{i, j^{\prime}} \mathbf{X}_{\left(i+i^{\prime}\right),\left(j^{\prime}+j^{\prime}\right)}
$$

Convolution (1D)

- Convolution viewed as matrix product
- Convolution is in fact weight sharing
- A linear function

$$
\mathbb{R}^{n \times m \times d} \rightarrow \mathbb{R}^{n^{\prime} \times m^{\prime} \times d^{\prime}}
$$

but with way less than $n \times m \times d \times n^{\prime} \times m^{\prime} \times d^{\prime}$ parameters

Translation equivariance

-Why doing convolution?

- Equivariance to image translations

Other equivariances

- What about other transformations?
- Reflections
- Rotations

- CNNs are not equivariant w.r.t. them
- Do data augmentation (i.e. learn equivariance/invariance)
- Change model to include this inductive bias! [G-CNN]

A primer on groups and symmetries

Groups

- A set \mathcal{G} with a binary operation \cdot satisfying
- (Associativity) $\mathfrak{a} \cdot(\mathfrak{b} \cdot \mathfrak{c})=(\mathfrak{a} \cdot \mathfrak{b}) \cdot \mathfrak{c}$ for all $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in \mathcal{G}$
- (Identity) $\exists \mathfrak{e} \in \mathcal{G}$ such that $\mathfrak{e} \cdot \mathfrak{a}=\mathfrak{a} \cdot \mathfrak{e}=\mathfrak{a}$
- (Inverse) $\exists \mathfrak{a}^{-1} \in \mathcal{G}$ such that $\mathfrak{a}^{-1} \cdot \mathfrak{a}=\mathfrak{a} \cdot \mathfrak{a}^{-1}=\mathfrak{e}$
- (Closure) $\mathfrak{a}, \mathfrak{b} \in \mathcal{G} \Rightarrow \mathfrak{a} \cdot \mathfrak{b} \in \mathcal{G}$ [for sub-groups]
- Transformations on objects "behave" like a group

Group actions

- How $x \in S$ is transformed by $\mathfrak{g} \in \mathcal{G}, \quad \mathbf{x} \mapsto \mathbf{g} . \mathbf{x}$
- An action must satisfy
- (Identity) $\mathfrak{e} . \mathbf{x}=\mathbf{x}$
$-($ Compatibility $) \mathfrak{g} \cdot(\mathfrak{h} . \mathbf{x})=(\mathfrak{g} \cdot \mathfrak{h}) \cdot \mathbf{x}$

Invariance, equivariance

- W.r.t. a function $f: S \rightarrow$ '
- Invariance: transformations do not affect result

$$
f(\mathbf{g} \cdot \mathbf{x})=f(\mathbf{x})
$$

- Equivariance: output transforms as input

$$
f(\mathfrak{g} \cdot \mathbf{x})=\mathfrak{g} \cdot f(\mathbf{x})
$$

- Such functions preserve "symmetries" in data

Back to neural networks

- Composition of equivariant layers
- Optionally, a final invariant layer
- Point-wise activations $\sigma(\cdot)$, and channel-wise functions (e.g. MLPs) are invariant/equivariant

Invariance/equivariance in action: Sets

Tasks on (multi-)sets

- Element classification/regression
$-\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
- Set classification/regression
- $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow y$
- Early approaches used RNN
- What about element order?

Permutation group

- Group \mathcal{S}_{n} of all bijective functions $\{1 . . n\} \rightarrow\{1 . . n\}$
- Group operation is function composition
- A $\pi \in \mathcal{S}_{n}$ acts by swapping elements in a sequence
- $\pi .\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\rangle=\left\langle x_{1}, x_{3}, x_{4}, x_{2}, x_{5}\right\rangle$
- A neural network for sets should be invariant/ equivariant w.r.t. permutations

Neural nets for sets

- Two linear equivariant operations
- Identity
- Sum of all elements

- Only one linear invariant function
- Sum of all elements (aggregation)

Deep sets

- DeepSets combines equivariant functions in layers, plus invariant in final (also, MLP)
- Multi-channel, like CNNs
- Other permutation-invariant functions can be used to perform aggregation (max, mean, ...)
- but only sum is linear

Invariance/equivariance in action: Graphs

Graphs

- A set of vertices V and a set of edges $E \subseteq V \times V$
- Vertices and edges may have labels
- Edges can be represented by an adjacency matrix

Graph isomorphism

- Changing vertex "numbering" does not change graphs

- But the adjacency matrix does change!

0	1	0	1	0						
1	0	1	1	0						
0	1	0	0	0						
1	1	0	0	1						
0	0	0	1	0	$\quad \neq \quad$	0	0	1	0	1
:---	:---	:---	:---	:---						
0	0	0	0	1						
1	0	0	1	1						
0	0	1	0	0						
1	1	1	0	0						

Graph convolution networks

- Layers act locally on vertex neighbourhood
- Reordering vertices do not affect encoding

- At most as representative as $2-W L$ isomorphism test
- Higher order equivariant networks are provably more representative (k-order $\Rightarrow k-\mathrm{WL}$)

Message-passing networks

- Message-passing layers consisting of
- Neighborhood aggregation: $\boldsymbol{a}_{v}{ }^{(l)}=\operatorname{AgGREGATE}{ }^{(1)}\left(\left\{\boldsymbol{h}_{u}^{(l-1)} \mid u \in \mathcal{N}(v)\right\}\right)$
- Context combination: $\boldsymbol{h}_{u}{ }^{(1)}=\operatorname{CombinE}{ }^{(l)}\left(\boldsymbol{h}_{u}^{(l-1)}, \boldsymbol{a}_{v}{ }^{(l)}\right)$
- The two steps can also be implemented by a single function
- A final readout layer to encode the graph: $\boldsymbol{h}_{\mathrm{G}}=\operatorname{Readout}\left(\left\{\boldsymbol{h}_{v}{ }^{(L)} \mid v \in V\right\}\right)$
- According to the different choice of the three functions, we can have different Graph Convolutional Networks

Invariant and equivariant layers

- Given a permutation group \mathcal{S}_{n}, a linear function
- $L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}^{n^{\prime \prime}}$ is equivariant iff $L(\pi . \mathbf{x})=\pi . L(\mathbf{x})$ for all $\pi \in \mathcal{S}_{n}, \mathbf{X} \in \mathbb{R}^{n^{k}}$
- $L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}$ is invariant iff $L(\pi . \mathbf{x})=L(\mathbf{x})$ for all $\pi \in \mathcal{S}_{n}, \mathbf{x} \in \mathbb{R}^{n^{k}}$
- Specifically, we consider the symmetric group \mathcal{S}_{n}, i.e. the group of all permutations of $1 . . n$, acting on k-order tensors in the following way:

$$
(\pi \cdot \mathbf{x})_{i, \ldots, \ldots, i k}=\mathbf{x}_{\left.\pi^{-2}(i)\right), \ldots, \pi^{-2}(i k)}
$$

Invariant and equivariant nets

- Take as input a tensor encoding of the graph and its vertex/edge features
- e.g., the adjacency matrix (i.e. 2-tensor) A, a 3-tensor $\mathbf{T}_{i i:}=\boldsymbol{l}_{i j}$, 3-tensor $\mathbf{T}_{i j:}=\boldsymbol{l}_{i j}$, their composition, etc.
- Composition of equivariant layers and point-wise non-linearities (can be of different orders), with an invariant final layer for invariant networks (optionally followed by a MLP)
- Produce vertex-level representations (equivariant network), or graph-level representations (invariant network)

Basis for inv't and equiv't layers

- Since L is a linear operator, it can be expressed as a linear combination of basis operators
- Invariant and equivariant operators can be represented as $\mathbb{R}^{n^{k} \times n^{k}}$ and $\mathbb{R}^{1 \times x^{k}}$ matrices acting on $\mathbb{R}^{n k}$ vectors with the standard matrix product
- Invariance/equivariance \Rightarrow weight sharing, way less than $n^{k} / n^{k+k^{\prime}}$ parameters:
- invariance $\quad \rightarrow \mathrm{Lx}=\mathrm{L}(\pi . \mathrm{x}) \quad \Rightarrow \mathrm{L}_{i}=\mathrm{L}_{\pi(1)}$ for all i, π
- equivariance $\rightarrow \pi .(L \mathbf{x})=\mathrm{L}(\pi . \mathbf{x}) \Rightarrow \mathrm{L}_{i, \pi^{-2}()}=\mathrm{L}_{\pi(0, j)}$ for all $i j, \pi$

Basis for inv't and equiv't layers

- Consider multi-indices $\boldsymbol{i}=\left(i_{1}, \ldots, i_{k}\right) \in\{1 . . n\}^{k}$, with $\pi(\boldsymbol{i})=\left(\pi\left(i_{1}\right), \ldots, \pi\left(i_{k}\right)\right)$ for all permutations $\pi \in \mathcal{S}_{n}$
- Define the equivalence relation $\boldsymbol{a} \sim \boldsymbol{b}$ iff $a_{i}=a_{j} \Leftrightarrow b_{i}=b_{j}$, i.e. they have the same equality patterns: $(1,2,1) \sim(3,4,3)$
- The equivalence classes $\gamma \in\{1 . . n\}^{k} / \sim$ are closed under group \mathcal{S}_{n} actions: $\boldsymbol{a} \sim \pi(\boldsymbol{a})$ for all $\pi \in \mathcal{S}_{n}, \boldsymbol{a} \in\{1 . . n\}^{k}$
- An orthogonal basis is defined as $\mathbf{B}_{a}{ }^{(r)}=\llbracket \boldsymbol{a} \in \gamma \rrbracket$, with dimension $\mathfrak{b}(k)$, i.e. the number of different partitions of a k-element set
- Biases can be added (invariant/equivariant $\mathbf{C}_{a}{ }^{(v)}$ constants), and a d-dimensional feature channel can be appended

Wrap-up

Conclusions

- Data has symmetries
- e.g. isometries don't change object category
- Traditionally, learnt by training with data augmentation
- Include symmetries in inductive bias by using equivariant neural networks
- Reduce parameters, data

References

- Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković (2021). Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. Retrieved from https://arxiv.org/abs/2104.13478
- Ian Goodfellow, Yoshua Bengio, Aaron Courville (2015). Deep learning. MIT Press. Available at http://www.deeplearningbook.org
- Cohen, T. S., \& Welling, M. (2016). Group Equivariant Convolutional Networks. In Proceedings of the 33rd International Conference on Machine Learning (Vol. 48, pp. 2990-2999). Retrieved from http://proceedings.mlr.press/v48/cohenc16.html
- Tai, K. S., Bailis, P., \& Valiant, G. (2019). Equivariant transformer networks. In Proceedings of the 36th International Conference on Machine Learning (Vol. 97, pp. 6086-6095). Retrieved from http:// proceedings.mlr.press/v97/tai19a.htmL

References

- Xu, K., Hu, W., Leskovec, J., \& Jegelka, S. (2019). How Powerful are Graph Neural Networks? Proceedings of the International Conference on Learning Representations (2019). Retrieved from http://arxiv.org/abs/1810.00826
- Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., \& Borgwardt, K. M. (2011). Weisfeiler-Lehman Graph Kernels. The Journal of Machine Learning Research, 12, 2539-2561. https://doi.org/10.1.1.232.1510
- Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., \& Smola, A. J. (2017). Deep Sets. Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 3391-3401). Retrieved from http://arxiv.org/abs/1703.06114
- Wagstaff, E., Fuchs, F. B., Engelcke, M., Posner, I., \& Osborne, M. (2019). On the Limitations of Representing Functions on Sets. Proceedings of the 36th International Conference on Machine Learning (pp. 6487-6494). Retrieved from http://arxiv.org/abs/1901.09006

References

- Maron, H., Ben-Hamu, H., Shamir, N., \& Lipman, Y. (2019a). Invariant and Equivariant Graph Networks. Proceedings of the International Conference on Learning Representations (2019). Retrieved from http://arxiv.org/abs/1812.09902
- Maron, H., Fetaya, E., Segol, N., \& Lipman, Y. (2019b). On the Universality of Invariant Networks. Proceedings of the 36th International Conference on Machine Learning (pp. 4363-4371). Retrieved from http://arxiv.org/abs/1901.09342
- Maron, H., Ben-Hamu, H., Serviansky, H., \& Lipman, Y. (2019c). Provably Powerful Graph Networks. Retrieved from http://arxiv.org/abs/1905.11136
- Micheli, A. (2009). Neural Network for Graphs: A Contextual Constructive Approach. IEEE Transactions on Neural Networks, 20(3), 498-511.
https://doi.org/10.1109/TNN.2008.2010350

