Invariance, equivariance, and inductive bias in deep learning

Domenico Tortorella

Computational Intelligence and Machine Learning (CIML) Department of Computer Science, University of Pisa

Università di Pisa

Computational Intelligence and Machine Learning Group

Outline

- Introduction
- A familiar example: CNNs
- A primer on groups and symmetries
- Building invariant/equivariant neural networks
- Invariance/equivariance in action: Sets
- Invariance/equivariance in action: Graphs
- Wrap up

A familiar example: CNNs

Neural networks

- Composition of simple functions $\mathbf{x} \mapsto \sigma(\mathbf{W} \mathbf{x} + \mathbf{b})$
- Trained by minimizing a loss over weights **W**, **b**

Image recognition

SEGMENTATION

CLASSIFICATION

- Images, instead of vectors
- Functions acting on tensors $\mathbb{R}^{n \times m \times d}$

Convolutional Neural Networks

- Composition of simple functions $\mathbf{x} \mapsto \sigma(\mathbf{W} \star \mathbf{x} + \mathbf{b})$
 - plus sub-sampling, optionally a final MLP
- Trained by minimizing a loss over weights **W**, **b**

Convolution (2D)

- Filter **W** acts locally in each pixel and its neighbourhood, sliding across image
- Formally,
- Action of W * x on image

 $\mathbf{x'}_{i,j} = \sum_{k \leq i' \leq k} \sum_{k \leq j' \leq k} \mathbf{W}_{i',j'} \mathbf{x}_{(i+i'),(j+j')}$

Convolution (1D)

 Convolution viewed as matrix product

- Convolution is in fact weight sharing
- A linear function

 $\mathbb{R}^{n \times m \times d} \rightarrow \mathbb{R}^{n' \times m' \times d'}$

but with way less than *n×m×d×n'×m'×d'* parameters

Translation equivariance

- Why doing convolution?
 - Equivariance to image translations

Other equivariances

- What about other transformations?
 - Reflections
 - Rotations

- CNNs are **not** equivariant w.r.t. them
 - Do data augmentation (i.e. learn equivariance/invariance)
 - Change model to include this inductive bias! [G-CNN]

A primer on groups and symmetries

Groups

- A set \mathcal{G} with a binary operation \cdot satisfying
 - (Associativity) $\mathfrak{a} \cdot (\mathfrak{b} \cdot \mathfrak{c}) = (\mathfrak{a} \cdot \mathfrak{b}) \cdot \mathfrak{c}$ for all $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in \mathcal{G}$
 - (Identity) $\exists e \in \mathcal{G}$ such that $e \cdot a = a \cdot e = a$
 - (Inverse) $\exists \mathfrak{a}^{-1} \in \mathcal{G}$ such that $\mathfrak{a}^{-1} \cdot \mathfrak{a} = \mathfrak{a} \cdot \mathfrak{a}^{-1} = \mathfrak{e}$
 - (Closure) $\mathfrak{a}, \mathfrak{b} \in \mathcal{G} \Rightarrow \mathfrak{a} \cdot \mathfrak{b} \in \mathcal{G}$ [for sub-groups]
- Transformations on objects "behave" like a group

Group actions

- How $x \in S$ is transformed by $g \in G$, $x \mapsto g.x$
- An action must satisfy
 - (Identity) e.x = x
 - (Compatibility) $g.(\mathfrak{h}.\mathbf{x}) = (g \cdot \mathfrak{h}).\mathbf{x}$

Invariance, equivariance

- W.r.t. a function $f: S \rightarrow S'$
- Invariance: transformations do not affect result $f(g.\mathbf{x}) = f(\mathbf{x})$
- Equivariance: output transforms as input $f(\mathfrak{g}.\mathbf{x}) = \mathfrak{g}.f(\mathbf{x})$
- Such functions preserve "symmetries" in data

Back to neural networks

- Composition of equivariant layers
 - Optionally, a final invariant layer
 - Point-wise activations $\sigma(\cdot)$, and channel-wise functions (e.g. MLPs) are invariant/equivariant

Invariance/equivariance in action: Sets

Tasks on (multi-)sets

Element classification/regression

$$- \{x_1, x_2, ..., x_n\} \rightarrow \{y_1, y_2, ..., y_n\}$$

- Set classification/regression
 - $\{x_1, x_2, ..., x_n\} \to y$
- Early approaches used RNN
 - What about element order?

Permutation group

- Group S_n of all bijective functions $\{1..n\} \rightarrow \{1..n\}$
 - Group operation is function composition
- A $\pi \in S_n$ acts by swapping elements in a sequence
 - $-\pi.\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle x_1, x_3, x_4, x_2, x_5 \rangle$
- A neural network for sets should be invariant/ equivariant w.r.t. permutations

Neural nets for sets

- Two linear equivariant operations
 - Identity
 - Sum of all elements

- Only one linear invariant function
 - Sum of all elements (aggregation)

$$= \alpha 1 1 1 1 x$$

Deep sets

- DeepSets combines equivariant functions in layers, plus invariant in final (also, MLP)
 - Multi-channel, like CNNs
- Other permutation-invariant functions can be used to perform aggregation (max, mean, ...)
 - but only sum is linear

Invariance/equivariance in action: Graphs

- A set of vertices V and a set of edges $E \subseteq V \times V$
- Vertices and edges may have labels
- Edges can be represented by an adjacency matrix

Graph isomorphism

 Changing vertex "numbering" does not change graphs

• But the adjacency matrix does change!

Θ	1	0	1	0
1	0	1	1	0
Θ	1	0	0	0
1	1	0	0	1
Θ	0	0	1	0

≠

=

0	0	1	0	1
0	0	0	0	1
1	0	0	1	1
0	0	1	0	0
1	1	1	0	0

Graph convolution networks

- Layers act locally on vertex neighbourhood
 - Reordering vertices do not affect encoding

- At most as representative as 2-WL isomorphism test
 - Higher order equivariant networks are provably more representative (k-order \Rightarrow k-WL)

Message-passing networks

- Message-passing layers consisting of
 - Neighborhood aggregation: $\boldsymbol{a}_{v}^{(l)} = A_{GGREGATE}(\{\boldsymbol{h}_{u}^{(l-1)} \mid u \in \mathcal{N}(v)\})$
 - Context combination: $\boldsymbol{h}_{u}^{(l)} = \text{COMBINE}^{(l)}(\boldsymbol{h}_{u}^{(l-1)}, \boldsymbol{a}_{v}^{(l)})$
- The two steps can also be implemented by a single function
- A final readout layer to encode the graph: $h_G = \text{Readout}(\{h_v^{(L)} \mid v \in V\})$
- According to the different choice of the three functions, we can have different Graph Convolutional Networks

Invariant and equivariant layers

- Given a permutation group S_n , a linear function
 - L: $\mathbb{R}^{n^k} \to \mathbb{R}^{n^{k'}}$ is *equivariant* iff $L(\pi.\mathbf{x}) = \pi.L(\mathbf{x})$ for all $\pi \in S_n, \mathbf{x} \in \mathbb{R}^{n^k}$
 - $L: \mathbb{R}^{n^k} \to \mathbb{R}$ is *invariant* iff $L(\pi.\mathbf{x}) = L(\mathbf{x})$ for all $\pi \in S_n, \mathbf{x} \in \mathbb{R}^{n^k}$
- Specifically, we consider the symmetric group S_n,
 i.e. the group of all permutations of 1..n, acting on k-order tensors in the following way:

$$(\pi \cdot \mathbf{X})_{i_1, \dots, i_k} = \mathbf{X}_{\pi^{-1}(i_1), \dots, \pi^{-1}(i_k)}$$

Invariant and equivariant nets

- Take as input a tensor encoding of the graph and its vertex/edge features
 - e.g., the adjacency matrix (i.e. 2-tensor) **A**, a 3-tensor $\mathbf{T}_{ii} = \mathbf{I}_{i}$, a 3-tensor $\mathbf{T}_{ii} = \mathbf{I}_{ii}$, their composition, etc.
- Composition of equivariant layers and point-wise non-linearities (can be of different orders), with an invariant final layer for invariant networks (optionally followed by a MLP)
- Produce vertex-level representations (equivariant network), or graph-level representations (invariant network)

Basis for inv't and equiv't layers

- Since *L* is a linear operator, it can be expressed as a linear combination of basis operators
- Invariant and equivariant operators can be represented as R^{n^k'×n^k} and R^{1×n^k} matrices acting on R^{n^k} vectors with the standard matrix product
- Invariance/equivariance ⇒ weight sharing, way less than n^k/n^{k+k'} parameters:
 - invariance $\rightarrow \mathbf{L} \mathbf{x} = \mathbf{L} (\pi . \mathbf{x}) \qquad \Rightarrow \mathbf{L}_i = \mathbf{L}_{\pi(i)}$ for all i, π
 - equivariance $\rightarrow \pi.(\mathbf{L} \mathbf{x}) = \mathbf{L}(\pi.\mathbf{x}) \Rightarrow \mathbf{L}_{i,\pi^{-1}(j)} = \mathbf{L}_{\pi(i),j}$ for all ij, π

Basis for inv't and equiv't layers

- Consider multi-indices $\mathbf{i} = (i_1, ..., i_k) \in \{1...n\}^k$, with $\pi(\mathbf{i}) = (\pi(i_1), ..., \pi(i_k))$ for all permutations $\pi \in S_n$
- Define the equivalence relation $\mathbf{a} \sim \mathbf{b}$ iff $a_i = a_j \Leftrightarrow b_i = b_j$, i.e. they have the same equality patterns: $(1,2,1) \sim (3,4,3)$
- The equivalence classes $\gamma \in \{1..n\}^k/\sim \text{are closed under}$ group S_n actions: $\boldsymbol{a} \sim \pi(\boldsymbol{a})$ for all $\pi \in S_n$, $\boldsymbol{a} \in \{1..n\}^k$
- An orthogonal basis is defined as $\mathbf{B}_{a}^{(\gamma)} = \llbracket a \in \gamma \rrbracket$, with dimension $\mathbb{b}(k)$, i.e. the number of different partitions of a k-element set
- Biases can be added (invariant/equivariant $\mathbf{C}_{a}^{(\mathbf{y})}$ constants), and a d-dimensional feature channel can be appended

Wrap-up

Conclusions

- Data has symmetries
 - e.g. isometries don't change object category
- Traditionally, learnt by training with data augmentation
- Include symmetries in inductive bias by using equivariant neural networks
 - Reduce parameters, data

References

- Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković (2021). Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. Retrieved from https://arxiv.org/abs/2104.13478
- Ian Goodfellow, Yoshua Bengio, Aaron Courville (2015). **Deep learning.** MIT Press. Available at http://www.deeplearningbook.org
- Cohen, T. S., & Welling, M. (2016). Group Equivariant Convolutional Networks. In Proceedings of the 33rd International Conference on Machine Learning (Vol. 48, pp. 2990–2999). Retrieved from http://proceedings.mlr.press/v48/cohenc16.html
- Tai, K. S., Bailis, P., & Valiant, G. (2019). Equivariant transformer networks. In Proceedings of the 36th International Conference on Machine Learning (Vol. 97, pp. 6086–6095). Retrieved from http://proceedings.mlr.press/v97/tai19a.html

References

- Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How Powerful are Graph Neural Networks? Proceedings of the International Conference on Learning Representations (2019). Retrieved from http://arxiv.org/abs/1810.00826
- Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M. (2011). Weisfeiler-Lehman Graph Kernels. The Journal of Machine Learning Research, 12, 2539–2561. https://doi.org/10.1.1.232.1510
- Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep Sets. Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 3391–3401). Retrieved from http://arxiv.org/abs/1703.06114
- Wagstaff, E., Fuchs, F. B., Engelcke, M., Posner, I., & Osborne, M. (2019). On the Limitations of Representing Functions on Sets. Proceedings of the 36th International Conference on Machine Learning (pp. 6487–6494). Retrieved from http://arxiv.org/abs/1901.09006

References

- Maron, H., Ben-Hamu, H., Shamir, N., & Lipman, Y. (2019a). Invariant and Equivariant Graph Networks. Proceedings of the International Conference on Learning Representations (2019). Retrieved from http://arxiv.org/abs/1812.09902
- Maron, H., Fetaya, E., Segol, N., & Lipman, Y. (2019b). On the Universality of Invariant Networks. Proceedings of the 36th International Conference on Machine Learning (pp. 4363–4371). Retrieved from http://arxiv.org/abs/1901.09342
- Maron, H., Ben-Hamu, H., Serviansky, H., & Lipman, Y. (2019c). Provably Powerful Graph Networks. Retrieved from http://arxiv.org/abs/1905.11136
- Micheli, A. (2009). Neural Network for Graphs: A Contextual Constructive Approach. IEEE Transactions on Neural Networks, 20(3), 498–511. https://doi.org/10.1109/TNN.2008.2010350