
Invariance, equivariance, and
inductive bias in deep learning
Domenico Tortorella
Computational Intelligence and Machine Learning (CIML)
Department of Computer Science, University of Pisa

Outline
● Introduction
● A familiar example: CNNs
● A primer on groups and symmetries
● Building invariant/equivariant neural networks
● Invariance/equivariance in action: Sets
● Invariance/equivariance in action: Graphs
● Wrap up

A familiar example: CNNs

Neural networks

● Composition of simple functions x σ(↦ W x + b)
● Trained by minimizing a loss over weights W, b

ℝn ℝm

Image recognition

● Images, instead of vectors
● Functions acting on tensors ℝn×m×d

SEGMENTATION CLASSIFICATION

cat

car

Convolutional Neural Networks

● Composition of simple functions x σ(↦ W ⋆ x + b)
– plus sub-sampling, optionally a final MLP

● Trained by minimizing a loss over weights W, b

LeN
et-5

Convolution (2D)
● Filter W acts locally in

each pixel and its
neighbourhood, sliding
across image

● Formally,

x’i,j = ∑-k≤i’≤k ∑-k≤j’≤k Wi’,j’ x(i+i’),(j+j’)
● Action of W ⋆ x on image

Convolution (1D)

= ×

● Convolution is in fact
weight sharing

● A linear function
ℝn×m×d → ℝn’×m’×d’

but with way less than
n×m×d×n’×m’×d’ parameters

● Convolution viewed as
matrix product

Translation equivariance
● Why doing convolution?

– Equivariance to image translations

W ⋆ =

Other equivariances
● What about other transformations?

– Reflections
– Rotations

● CNNs are not equivariant w.r.t. them
– Do data augmentation (i.e. learn equivariance/invariance)
– Change model to include this inductive bias! [G-CNN]

A primer on groups and symmetries

Groups
● A set with a binary operation · satisfying𝓖

– (Associativity) ·(·) = (·)· for all , , 𝖆 𝖇 𝖈 𝖆 𝖇 𝖈 𝖆 𝖇 𝖈 ∈ 𝓖
– (Identity) ∃ 𝖊 ∈ such that ·𝓖 𝖊 𝖆 = 𝖆· = 𝖊 𝖆

– (Inverse) ∃ 𝖆-1 ∈ such that 𝓖 𝖆-1·𝖆 = 𝖆·𝖆-1 = 𝖊
– (Closure) , 𝖆 𝖇 ∈ 𝓖 ⇒ · 𝖆 𝖇 ∈ 𝓖 [for sub-groups]

● Transformations on objects “behave” like a group

Group actions
● How x ∈ S is transformed by 𝖌 ∈ , 𝓖 x ↦ .𝖌 x
● An action must satisfy

– (Identity) .𝖊 x = x
– (Compatibility) .(.𝖌 𝖍 x) = (·).𝖌 𝖍 x

 𝖌 . x .x𝖌

Invariance, equivariance
● W.r.t. a function f: S → S’
● Invariance: transformations do not affect result

f(.𝖌 x) = f(x)
● Equivariance: output transforms as input

f(.𝖌 x) = .𝖌 f(x)
● Such functions preserve “symmetries” in data

Back to neural networks

● Composition of equivariant layers
– Optionally, a final invariant layer
– Point-wise activations σ(·), and channel-wise

functions (e.g. MLPs) are invariant/equivariant

equivariant 1 equivariant Ninput ...
output

invariant output

output

Invariance/equivariance in action: Sets

Tasks on (multi-)sets
● Element classification/regression

– {x1, x2, …, xn} → {y1, y2, …, yn}
● Set classification/regression

– {x1, x2, …, xn} → y
● Early approaches used RNN

– What about element order?

Permutation group
● Group 𝓢n of all bijective functions {1..n} → {1..n}

– Group operation is function composition
● A π ∈ 𝓢n acts by swapping elements in a sequence

– π.⟨x1, x2, x3, x4, x5 = ⟩ ⟨x1, x3, x4, x2, x5⟩

● A neural network for sets should be invariant/
equivariant w.r.t. permutations

Neural nets for sets
● Two linear equivariant operations

– Identity
– Sum of all elements

● Only one linear invariant function
– Sum of all elements (aggregation)

1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 1 0 0 0

= α 1 1 1 1 1 × + β 0 0 1 0 0 ×

1 1 1 1 1 0 0 0 1 0

1 1 1 1 1 0 0 0 0 1

= α 1 1 1 1 1 ×

Deep sets
● DeepSets combines equivariant functions in layers, plus

invariant in final (also, MLP)
– Multi-channel, like CNNs

● Other permutation-invariant functions can be used to
perform aggregation (max, mean, …)
– but only sum is linear

Invariance/equivariance in action: Graphs

Graphs
● A set of vertices V and a set of edges E ⊆ V×V
● Vertices and edges may have labels
● Edges can be represented by an adjacency matrix

Graph isomorphism
● Changing vertex

“numbering” does not
change graphs

● But the adjacency matrix
does change!

0 1 0 1 0 0 0 1 0 1

1 0 1 1 0 0 0 0 0 1

0 1 0 0 0 ≠ 1 0 0 1 1

1 1 0 0 1 0 0 1 0 0

0 0 0 1 0 1 1 1 0 0

=

Graph convolution networks
● Layers act locally on vertex neighbourhood

– Reordering vertices do not affect encoding

● At most as representative as 2-WL isomorphism test
– Higher order equivariant networks are provably more

representative (k-order ⇒ k-WL)

Message-passing networks
● Message-passing layers consisting of

– Neighborhood aggregation: av
(l) = AGGREGATE(l)({hu

(l-1) | u ∈ (𝓝 v)})

– Context combination: hu
(l) = COMBINE(l)(hu

(l-1), av
(l))

● The two steps can also be implemented by a single function

● A final readout layer to encode the graph: hG = READOUT({hv
(L) | v ∈ V})

● According to the different choice of the three functions, we can have
different Graph Convolutional Networks

Invariant and equivariant layers
● Given a permutation group 𝓢n, a linear function

– L: ℝnᵏ → ℝn ′ᵏ is equivariant iff L(π.x) = π.L(x) for all π ∈ 𝓢n, x ∈ ℝnᵏ

– L: ℝnᵏ → ℝ is invariant iff L(π.x) = L(x) for all π ∈ 𝓢n, x ∈ ℝnᵏ

● Specifically, we consider the symmetric group 𝓢n,
i.e. the group of all permutations of 1..n, acting on k-order tensors
in the following way:

(π . x)i₁, …, iₖ = xπ-¹(i₁), …, π-¹(i)ₖ π

π

π

π
π

π

Invariant and equivariant nets

● Take as input a tensor encoding of the graph and its vertex/edge features

– e.g., the adjacency matrix (i.e. 2-tensor) A, a 3-tensor Tii: = li, a 3-tensor Tij: = lij, their composition, etc.

● Composition of equivariant layers and point-wise non-linearities (can be of different
orders), with an invariant final layer for invariant networks (optionally followed by a MLP)

● Produce vertex-level representations (equivariant network), or graph-level
representations (invariant network)

L1 σ L2 σ Lm σ...T T′MLP

Basis for inv’t and equiv’t layers
● Since L is a linear operator, it can be expressed as a

linear combination of basis operators
● Invariant and equivariant operators can be represented

as ℝn ′ᵏ ×nᵏ and ℝ1×nᵏ matrices acting on ℝnᵏ vectors with the
standard matrix product

● Invariance/equivariance weight sharing,⇒
way less than nk/nk+k′ parameters:

– invariance → L x = L (π.x) ⇒ Li = Lπ(i) for all i, π

– equivariance → π.(L x) = L (π.x) ⇒ Li,π-¹(j) = Lπ(i),j for all ij, π

Basis for inv’t and equiv’t layers
● Consider multi-indices i = (i1, …, ik) ∈ {1..n}k,

with π(i) = (π(i1), …, π(ik)) for all permutations π ∈ 𝓢n

● Define the equivalence relation a ~ b iff ai = aj ⇔ bi = bj,
i.e. they have the same equality patterns: (1,2,1) ~ (3,4,3)

● The equivalence classes γ ∈ {1..n}k/~ are closed under
group 𝓢n actions: a ~ π(a) for all π ∈ 𝓢n, a ∈ {1..n}k

● An orthogonal basis is defined as Ba
(γ) = ⟦a ∈ γ , with dimension (⟧ 𝕓 k),

i.e. the number of different partitions of a k-element set
● Biases can be added (invariant/equivariant Ca

(γ) constants),
and a d-dimensional feature channel can be appended

Wrap-up

Conclusions
● Data has symmetries

– e.g. isometries don’t change object category
● Traditionally, learnt by training with data augmentation
● Include symmetries in inductive bias by using

equivariant neural networks
– Reduce parameters, data

References
● Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković (2021). Geometric

Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. Retrieved from
https://arxiv.org/abs/2104.13478

● Ian Goodfellow, Yoshua Bengio, Aaron Courville (2015). Deep learning. MIT Press.
Available at http://www.deeplearningbook.org

● Cohen, T. S., & Welling, M. (2016). Group Equivariant Convolutional Networks. In
Proceedings of the 33rd International Conference on Machine Learning (Vol. 48,
pp. 2990–2999). Retrieved from http://proceedings.mlr.press/v48/cohenc16.html

● Tai, K. S., Bailis, P., & Valiant, G. (2019). Equivariant transformer networks. In
Proceedings of the 36th International Conference on Machine Learning (Vol. 97,
pp. 6086–6095). Retrieved from http://proceedings.mlr.press/v97/tai19a.html

https://arxiv.org/abs/2104.13478
http://www.deeplearningbook.org/
http://proceedings.mlr.press/v48/cohenc16.html
http://proceedings.mlr.press/v97/tai19a.html

References
● Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How Powerful are Graph Neural

Networks? Proceedings of the International Conference on Learning Representations
(2019). Retrieved from http://arxiv.org/abs/1810.00826

● Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M.
(2011). Weisfeiler-Lehman Graph Kernels. The Journal of Machine Learning Research,
12, 2539–2561. https://doi.org/10.1.1.232.1510

● Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J.
(2017). Deep Sets. Advances in Neural Information Processing Systems 30 (NIPS 2017)
(pp. 3391–3401). Retrieved from http://arxiv.org/abs/1703.06114

● Wagstaff, E., Fuchs, F. B., Engelcke, M., Posner, I., & Osborne, M. (2019). On the
Limitations of Representing Functions on Sets. Proceedings of the 36th International
Conference on Machine Learning (pp. 6487–6494). Retrieved from
http://arxiv.org/abs/1901.09006

http://arxiv.org/abs/1810.00826
https://doi.org/10.1.1.232.1510
http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1901.09006

References
● Maron, H., Ben-Hamu, H., Shamir, N., & Lipman, Y. (2019a). Invariant and Equivariant

Graph Networks. Proceedings of the International Conference on Learning Representations
(2019). Retrieved from http://arxiv.org/abs/1812.09902

● Maron, H., Fetaya, E., Segol, N., & Lipman, Y. (2019b). On the Universality of Invariant
Networks. Proceedings of the 36th International Conference on Machine Learning (pp.
4363–4371). Retrieved from http://arxiv.org/abs/1901.09342

● Maron, H., Ben-Hamu, H., Serviansky, H., & Lipman, Y. (2019c). Provably Powerful Graph
Networks. Retrieved from http://arxiv.org/abs/1905.11136

● Micheli, A. (2009). Neural Network for Graphs: A Contextual Constructive Approach. IEEE
Transactions on Neural Networks, 20(3), 498–511.
https://doi.org/10.1109/TNN.2008.2010350

http://arxiv.org/abs/1812.09902
http://arxiv.org/abs/1901.09342
http://arxiv.org/abs/1905.11136
https://doi.org/10.1109/TNN.2008.2010350

