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A familiar example: CNNs



Neural networks

● Composition of simple functions x  σ(↦ W x + b)
● Trained by minimizing a loss over weights W, b

ℝn ℝm



Image recognition

● Images, instead of vectors
● Functions acting on tensors ℝn×m×d

SEGMENTATION CLASSIFICATION
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car



Convolutional Neural Networks

● Composition of simple functions x  σ( ↦ W ⋆ x + b )
– plus sub-sampling, optionally a final MLP

● Trained by minimizing a loss over weights W, b

LeN
et-5



Convolution (2D)
● Filter W acts locally in

each pixel and its 
neighbourhood, sliding 
across image

● Formally,

x’i,j = ∑-k≤i’≤k ∑-k≤j’≤k Wi’,j’ x(i+i’),(j+j’)
● Action of W ⋆ x on image



Convolution (1D)

= ×

● Convolution is in fact 
weight sharing

● A linear function
ℝn×m×d → ℝn’×m’×d’

but with way less than
n×m×d×n’×m’×d’ parameters

● Convolution viewed as 
matrix product



Translation equivariance
● Why doing convolution?

– Equivariance to image translations

W  ⋆ =



Other equivariances
● What about other transformations?

– Reflections
– Rotations

● CNNs are not equivariant w.r.t. them
– Do data augmentation (i.e. learn equivariance/invariance)
– Change model to include this inductive bias! [G-CNN]



A primer on groups and symmetries



Groups
● A set  with a binary operation · satisfying𝓖

– (Associativity) ·( · ) = ( · )·   for all  , ,  𝖆 𝖇 𝖈 𝖆 𝖇 𝖈 𝖆 𝖇 𝖈 ∈ 𝓖
– (Identity)   ∃ 𝖊 ∈   such that ·𝓖 𝖊 𝖆 = 𝖆·  = 𝖊 𝖆

– (Inverse)  ∃ 𝖆-1 ∈   such that 𝓖 𝖆-1·𝖆 = 𝖆·𝖆-1 = 𝖊
– (Closure) ,  𝖆 𝖇 ∈     𝓖 ⇒ ·  𝖆 𝖇 ∈ 𝓖  [for sub-groups]

● Transformations on objects “behave” like a group



Group actions
● How x ∈ S is transformed by  𝖌 ∈ ,        𝓖 x  ↦  .𝖌 x
● An action must satisfy

– (Identity) .𝖊 x = x
– (Compatibility) .( .𝖌 𝖍 x) = ( · ).𝖌 𝖍 x

 𝖌    . x  .x𝖌



Invariance, equivariance
● W.r.t. a function f: S → S’
● Invariance: transformations do not affect result

f( .𝖌 x) = f(x)
● Equivariance: output transforms as input

f( .𝖌 x) = .𝖌 f(x)
● Such functions preserve “symmetries” in data



Back to neural networks

● Composition of equivariant layers
– Optionally, a final invariant layer
– Point-wise activations σ(·), and channel-wise

functions (e.g. MLPs) are invariant/equivariant

equivariant 1 equivariant Ninput ...
output

invariant output

output



Invariance/equivariance in action: Sets



Tasks on (multi-)sets
● Element classification/regression

– {x1, x2, …, xn}  →  {y1, y2, …, yn}
● Set classification/regression

– {x1, x2, …, xn}  →  y
● Early approaches used RNN

– What about element order?



Permutation group
● Group 𝓢n of all bijective functions {1..n} → {1..n}

– Group operation is function composition
● A π ∈ 𝓢n acts by swapping elements in a sequence

– π.⟨x1, x2, x3, x4, x5  = ⟩ ⟨x1, x3, x4, x2, x5⟩

● A neural network for sets should be invariant/ 
equivariant w.r.t. permutations



Neural nets for sets
● Two linear equivariant operations

– Identity
– Sum of all elements

● Only one linear invariant function
– Sum of all elements (aggregation)

1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 1 0 0 0

= α 1 1 1 1 1 × + β 0 0 1 0 0 ×

1 1 1 1 1 0 0 0 1 0

1 1 1 1 1 0 0 0 0 1

= α 1 1 1 1 1 ×



Deep sets
● DeepSets combines equivariant functions in layers, plus 

invariant in final (also, MLP)
– Multi-channel, like CNNs

● Other permutation-invariant functions can be used to 
perform aggregation (max, mean, …)
– but only sum is linear



Invariance/equivariance in action: Graphs



Graphs
● A set of vertices V and a set of edges E  ⊆ V×V
● Vertices and edges may have labels
● Edges can be represented by an adjacency matrix



Graph isomorphism
● Changing vertex 

“numbering” does not 
change graphs

● But the adjacency matrix 
does change!

0 1 0 1 0 0 0 1 0 1

1 0 1 1 0 0 0 0 0 1

0 1 0 0 0 ≠ 1 0 0 1 1

1 1 0 0 1 0 0 1 0 0

0 0 0 1 0 1 1 1 0 0

=



Graph convolution networks
● Layers act locally on vertex neighbourhood

– Reordering vertices do not affect encoding

● At most as representative as 2-WL isomorphism test
– Higher order equivariant networks are provably more 

representative (k-order  ⇒ k-WL)



Message-passing networks
● Message-passing layers consisting of

– Neighborhood aggregation: av
(l) = AGGREGATE(l)({hu

(l-1) | u ∈ (𝓝 v)})

– Context combination: hu
(l) = COMBINE(l)(hu

(l-1), av
(l))

● The two steps can also be implemented by a single function

● A final readout layer to encode the graph: hG = READOUT({hv
(L) | v ∈ V})

● According to the different choice of the three functions, we can have 
different Graph Convolutional Networks



Invariant and equivariant layers
● Given a permutation group 𝓢n, a linear function

– L: ℝnᵏ → ℝn ′ᵏ  is equivariant iff L(π.x) = π.L(x) for all π ∈ 𝓢n, x ∈ ℝnᵏ

– L: ℝnᵏ → ℝ is invariant iff L(π.x) = L(x) for all π ∈ 𝓢n, x ∈ ℝnᵏ

● Specifically, we consider the symmetric group 𝓢n,
i.e. the group of all permutations of 1..n, acting on k-order tensors 
in the following way:

(π . x)i₁, …, iₖ = xπ-¹(i₁), …, π-¹(i )ₖ π

π

π

π
π

π



Invariant and equivariant nets

● Take as input a tensor encoding of the graph and its vertex/edge features

– e.g., the adjacency matrix (i.e. 2-tensor) A, a 3-tensor Tii: = li, a 3-tensor Tij: = lij, their composition, etc.

● Composition of equivariant layers and point-wise non-linearities (can be of different 
orders), with an invariant final layer for invariant networks (optionally followed by a MLP)

● Produce vertex-level representations (equivariant network), or graph-level 
representations (invariant network)

L1 σ L2 σ Lm σ...T T′MLP



Basis for inv’t and equiv’t layers
● Since L is a linear operator, it can be expressed as a 

linear combination of basis operators
● Invariant and equivariant operators can be represented 

as ℝn ′ᵏ ×nᵏ and ℝ1×nᵏ matrices acting on ℝnᵏ vectors with the 
standard matrix product

● Invariance/equivariance  weight sharing,⇒
way less than nk/nk+k′ parameters:

– invariance → L x = L (π.x) ⇒ Li = Lπ(i)  for all i, π

– equivariance → π.(L x) = L (π.x) ⇒ Li,π-¹(j) = Lπ(i),j  for all ij, π



Basis for inv’t and equiv’t layers
● Consider multi-indices i = (i1, …, ik) ∈ {1..n}k,

with π(i) = (π(i1), …, π(ik)) for all permutations π ∈ 𝓢n

● Define the equivalence relation a ~ b iff ai = aj  ⇔ bi = bj,
i.e. they have the same equality patterns: (1,2,1) ~ (3,4,3)

● The equivalence classes γ ∈ {1..n}k/~ are closed under
group 𝓢n actions: a ~ π(a) for all π ∈ 𝓢n, a ∈ {1..n}k

● An orthogonal basis is defined as Ba
(γ) = ⟦a ∈ γ , with dimension (⟧ 𝕓 k),

i.e. the number of different partitions of a k-element set
● Biases can be added (invariant/equivariant Ca

(γ) constants),
and a d-dimensional feature channel can be appended



Wrap-up



Conclusions
● Data has symmetries

– e.g. isometries don’t change object category
● Traditionally, learnt by training with data augmentation
● Include symmetries in inductive bias by using 

equivariant neural networks
– Reduce parameters, data
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