
Community Detection in Large Graphs

Davide Rucci, PhD Student in Computer Science

May 7, 2021

University of Pisa

Mauriana Pesaresi Seminar Series



Community Detection

Given a graph G = (V ,E ) we say that

A community is a subset of nodes sharing “significantly many”

connections with respect to the rest of the graph.

1



Community Detection

Figure 1: Real-life environment

1



Community Detection

Figure 2: Co-authorships
1



Community Detection

Figure 3: Protein-protein interactions

1



Community Formalizations

• Adjacency-based

• Maximal Clique

• Plexes

• Graphlets

• . . . many others

• Metric-based

• Clusters

(a) 4-clique

(b) 2-plex, 4

nodes

(c) 4-node

graphlet

2



Community Formalizations

• Adjacency-based

• Maximal Cliques

• Plexes

• Graphlets

• . . . many others

• Metric-based

• Clusters

(a) 4-clique

(b) 2-plex, 4

nodes

(c) 4-node

graphlet

2



Community Formalizations

• Adjacency-based

• Maximal Cliques

• Plexes

• Graphlets

• . . . many others

• Metric-based

• Clusters

(a) 4-clique

(b) 2-plex, 4

nodes

(c) 4-node

graphlet

2



Community Formalizations

• Adjacency-based

• Maximal Cliques

• Plexes

• Graphlets

• . . . many others

• Metric-based

• Clusters

2



Problem Statement

• Input: A graph G = (V ,E ), an integer k

• Output: A list of all the communities contained in G made

up by (at least or exactly) k nodes

3



Enumerating Cliques

Listing all (maximal) cliques contained in a graph is a well-known

NP-hard problem. Known algorithms include:

• Binary Partition Scheme

• Reverse Search Scheme

• Conte et al. → αÕ(min{|E |d , qd∆}) time, O
(√
|E |
)

space

• O(3|V |/3) is worst-case optimal (Moon-Moser graphs).

4



Enumerating Cliques

Listing all (maximal) cliques contained in a graph is a well-known

NP-hard problem. Known algorithms include:

• Binary Partition Scheme
• Bron-Kerbosch → O(4|V |/3) time

• Tomita et al. → O(3|V |/3) time

• Eppstein et al. → O(d |V |3d/3) time

O(|V |+ q∆) space

• Reverse Search Scheme

• Conte et al. → αÕ(min{|E |d , qd∆}) time, O
(√
|E |
)

space

• O(3|V |/3) is worst-case optimal (Moon-Moser graphs).

4



Enumerating Cliques

Listing all (maximal) cliques contained in a graph is a well-known

NP-hard problem. Known algorithms include:

• Binary Partition Scheme
• Bron-Kerbosch → O(4|V |/3) time

• Tomita et al. → O(3|V |/3) time

• Eppstein et al. → O(d |V |3d/3) time

O(|V |+ q∆) space

• Reverse Search Scheme

• Conte et al. → αÕ(min{|E |d , qd∆}) time, O
(√
|E |
)

space

• O(3|V |/3) is worst-case optimal (Moon-Moser graphs).

4



Enumerating Cliques

• Binary Partition Scheme
• Bron-Kerbosch → O(4|V |/3) time

• Tomita et al. → O(3|V |/3) time

• Eppstein et al. → O(d |V |3d/3) time

O(|V |+ q∆) space

• Reverse Search Scheme

• Conte et al. → αÕ(min{|E |d , qd∆}) time, O
(√
|E |
)

space

• O(3|V |/3) is worst-case optimal (Moon-Moser graphs).

4



Binary Partition

Binary Partition is a traditional technique largely adopted for

enumeration.

• Recursive approach

• Given an element v of the input and a partial solution S ,
recursively proceed with

• ENUM(S ∪ {x});

• ENUM(S) removing x from the input.

5



Binary Partition

The Binary Partition scheme on graphs corresponds to:

1. Pick v ∈ V

2. ENUM(G ,S ∪ {v})
3. ENUM(G \ {v}, S)

6



Reverse Search

Key idea: given a solution construct another solution using a

parent rule. It explores the solution space.

7



Bron-Kerbosch Algorithm

Algorithm 1 Bron-Kerbosch Algorithm

1: function Bron-Kerbosch(P,R,X )

2: if P = ∅ and X = ∅ then

3: return . R is a maximal clique

4: end if

5: for all v ∈ P do

6: Bron-Kerbosch(P ∩ N(v),R ∪ {v},X ∩ N(v))

7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

10: end function

8



Tomita and Eppstein

• Tomita et al. algorithm uses pivoting to achieve optimal
worst-case running time

• Informally, this means choosing v ∈ P ∪ X such that

|P ∩ N(v)| is maximized, then loop through P \ N(v).

• Eppstein et al. proposed a variant built on top of Tomita et
al.’s

• It exploits a degeneracy ordering of G .

9



Tomita and Eppstein

• Tomita et al. algorithm uses pivoting to achieve optimal
worst-case running time

• Informally, this means choosing v ∈ P ∪ X such that

|P ∩ N(v)| is maximized, then loop through P \ N(v).

• Eppstein et al. proposed a variant built on top of Tomita et
al.’s

• It exploits a degeneracy ordering of G .

9



Tomita and Eppstein

• Tomita et al. algorithm uses pivoting to achieve optimal
worst-case running time

• Informally, this means choosing v ∈ P ∪ X such that

|P ∩ N(v)| is maximized, then loop through P \ N(v).

• Eppstein et al. proposed a variant built on top of Tomita et
al.’s

• It exploits a degeneracy ordering of G .

9



Tomita and Eppstein

• Tomita et al. algorithm uses pivoting to achieve optimal
worst-case running time

• Informally, this means choosing v ∈ P ∪ X such that

|P ∩ N(v)| is maximized, then loop through P \ N(v).

• Eppstein et al. proposed a variant built on top of Tomita et
al.’s

• It exploits a degeneracy ordering of G .

9



Degeneracy Ordering

Definition: The degeneracy of a graph G = (V ,E ) is the

minimum d ∈ N for which there exists an ordering of V such that

every vertex has at most d neighbors later in the ordering.

F C H EI BD GA

Figure 4: A graph with degeneracy d = 3

10



Output Sensitivity

• The algorithm by Eppstein et al. shows that clique

enumeration is fixed parameter tractable → O(d |V |3d/3);

• Output-sensitivity: complexity expressed as a function of the

output size;

• Delay: Time spent between the output of two consecutive

solutions;

• Eppstein et al. has exponential delay;

• Tomita et al. also has exponential delay unless P = NP.

11



Output Sensitivity

• The algorithm by Eppstein et al. shows that clique

enumeration is fixed parameter tractable → O(d |V |3d/3);

• Output-sensitivity: complexity expressed as a function of the

output size;

• Delay: Time spent between the output of two consecutive

solutions;

• Eppstein et al. has exponential delay;

• Tomita et al. also has exponential delay unless P = NP.

11



Output Sensitivity

• The algorithm by Eppstein et al. shows that clique

enumeration is fixed parameter tractable → O(d |V |3d/3);

• Output-sensitivity: complexity expressed as a function of the

output size;

• Delay: Time spent between the output of two consecutive

solutions;

• Eppstein et al. has exponential delay;

• Tomita et al. also has exponential delay unless P = NP.

11



Output Sensitivity

• The algorithm by Eppstein et al. shows that clique

enumeration is fixed parameter tractable → O(d |V |3d/3);

• Output-sensitivity: complexity expressed as a function of the

output size;

• Delay: Time spent between the output of two consecutive

solutions;

• Eppstein et al. has exponential delay;

• Tomita et al. also has exponential delay unless P = NP.

11



Output Sensitivity

• The algorithm by Eppstein et al. shows that clique

enumeration is fixed parameter tractable → O(d |V |3d/3);

• Output-sensitivity: complexity expressed as a function of the

output size;

• Delay: Time spent between the output of two consecutive

solutions;

• Eppstein et al. has exponential delay;

• Tomita et al. also has exponential delay unless P = NP.

11



Graphlets

• There exist many algorithms for k−graphlet enumeration.

• The best state-of-the-art algorithm has a delay of O(k2∆).

• k: size of the graphlets desired

• ∆: maximum degree of the graph

• Currently working on an improvement of this bound, using the

so called Push-Out Amortization

12



Graphlets

• There exist many algorithms for k−graphlet enumeration.

• The best state-of-the-art algorithm has a delay of O(k2∆).

• k : size of the graphlets desired

• ∆: maximum degree of the graph

• Currently working on an improvement of this bound, using the

so called Push-Out Amortization

12



Graphlets

• There exist many algorithms for k−graphlet enumeration.

• The best state-of-the-art algorithm has a delay of O(k2∆).

• k : size of the graphlets desired

• ∆: maximum degree of the graph

• Currently working on an improvement of this bound, using the

so called Push-Out Amortization

12



Push-Out Amortization

Push-Out Amortization is a novel technique for output sensitive,

bounded-delay enumeration.

It exploits the structure of recursive

(binary partition) trees.

Theorem: Let T ∗ be the time taken by a leaf node of the

recursion tree. If all non-leaf nodes have∑
Y∈C(X )

T (Y ) ≥ αT (X )− β(|C (X )|+ 1)T ∗ α > 1, β ≥ 0

then the delay of the algorithm is bounded by O(T ∗).

13



Push-Out Amortization

Push-Out Amortization is a novel technique for output sensitive,

bounded-delay enumeration. It exploits the structure of recursive

(binary partition) trees.

Theorem: Let T ∗ be the time taken by a leaf node of the

recursion tree. If all non-leaf nodes have∑
Y∈C(X )

T (Y ) ≥ αT (X )− β(|C (X )|+ 1)T ∗ α > 1, β ≥ 0

then the delay of the algorithm is bounded by O(T ∗).

13



Push-Out Amortization

Push-Out Amortization is a novel technique for output sensitive,

bounded-delay enumeration. It exploits the structure of recursive

(binary partition) trees.

Theorem: Let T ∗ be the time taken by a leaf node of the

recursion tree. If all non-leaf nodes have∑
Y∈C(X )

T (Y ) ≥ αT (X )− β(|C (X )|+ 1)T ∗ α > 1, β ≥ 0

then the delay of the algorithm is bounded by O(T ∗).

13



Push-Out Amortization in Short

• Child nodes should pay more than their parent;

• A non-leaf node must have at least two children;

• |leaves| ≥ |internal nodes|
• The overall cost is dominated by the cost of leaves;

14



Graphlets

Our current findings are:

• A O(k2∆) delay practical algorithm;

• A O(k2) delay algorithm using push-out amortization;

• A O(1) delay algorithm using push-out amortization

(currently in development).

15



Conclusions

• Enumeration is easy to think, yet extremely difficult to

optimize;

• There exists a whole hierarchy of complexity classes for

enumeration;

• Push-out amortization is a very powerful technique and can
be applied to a huge variety of enumeration problems;

• k-edge subgraphs

• All graphlets (no bounds on the size)

• Matchings

• Elimination Orderings

• . . .

16



Bibliography

• BK: https://doi.org/10.1145%2F362342.362367

• Tomita: https://doi.org/10.1016/j.tcs.2006.06.015

• Eppstein: https://doi.org/10.1145/2543629

• Enum. Complexity: http://bulletin.eatcs.org/index.php/

beatcs/article/view/596/605

• Reverse Search Cliques:

https://doi.org/10.4230/LIPIcs.ICALP.2016.148

• Push-Out Amortization: https://link.springer.com/content/

pdf/10.1007/978-3-319-21840-3_49.pdf

17

https://doi.org/10.1145%2F362342.362367
https://doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/10.1145/2543629
http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
https://doi.org/10.4230/LIPIcs.ICALP.2016.148
https://link.springer.com/content/pdf/10.1007/978-3-319-21840-3_49.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-21840-3_49.pdf


Thank You!

Thank you for your attention!

My contacts:

email: davide.rucci@phd.unipi.it

office: Room 300, Computer Science Dept. (Polo Fibonacci, ed. C, 2nd floor)

18


