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Community Detection

Given a graph G = (V ,E ) we say that

A community is a subset of nodes sharing “significantly many”

connections with respect to the rest of the graph.
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Community Detection

Figure 1: Real-life environment
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Community Detection

Figure 2: Co-authorships
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Community Detection

Figure 3: Protein-protein interactions
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Community Formalizations

• Adjacency-based

• Maximal Clique

• Plexes

• Graphlets

• . . . many others

• Metric-based

• Clusters

(a) 4-clique

(b) 2-plex, 4

nodes

(c) 4-node

graphlet
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Problem Statement

• Input: A graph G = (V ,E ), an integer k

• Output: A list of all the communities contained in G made

up by (at least or exactly) k nodes
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Enumerating Cliques

Listing all (maximal) cliques contained in a graph is a well-known

NP-hard problem. Known algorithms include:

• Binary Partition Scheme

• Reverse Search Scheme

• Conte et al. → αÕ(min{|E |d , qd∆}) time, O
(√
|E |
)

space

• O(3|V |/3) is worst-case optimal (Moon-Moser graphs).
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Binary Partition

Binary Partition is a traditional technique largely adopted for

enumeration.

• Recursive approach

• Given an element v of the input and a partial solution S ,
recursively proceed with

• ENUM(S ∪ {x});

• ENUM(S) removing x from the input.
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Binary Partition

The Binary Partition scheme on graphs corresponds to:

1. Pick v ∈ V

2. ENUM(G ,S ∪ {v})
3. ENUM(G \ {v}, S)
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Reverse Search

Key idea: given a solution construct another solution using a

parent rule. It explores the solution space.
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Bron-Kerbosch Algorithm

Algorithm 1 Bron-Kerbosch Algorithm

1: function Bron-Kerbosch(P,R,X )

2: if P = ∅ and X = ∅ then

3: return . R is a maximal clique

4: end if

5: for all v ∈ P do

6: Bron-Kerbosch(P ∩ N(v),R ∪ {v},X ∩ N(v))

7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

10: end function
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Tomita and Eppstein

• Tomita et al. algorithm uses pivoting to achieve optimal
worst-case running time

• Informally, this means choosing v ∈ P ∪ X such that

|P ∩ N(v)| is maximized, then loop through P \ N(v).

• Eppstein et al. proposed a variant built on top of Tomita et
al.’s

• It exploits a degeneracy ordering of G .
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Degeneracy Ordering

Definition: The degeneracy of a graph G = (V ,E ) is the

minimum d ∈ N for which there exists an ordering of V such that

every vertex has at most d neighbors later in the ordering.

F C H EI BD GA

Figure 4: A graph with degeneracy d = 3

10



Output Sensitivity

• The algorithm by Eppstein et al. shows that clique

enumeration is fixed parameter tractable → O(d |V |3d/3);

• Output-sensitivity: complexity expressed as a function of the

output size;

• Delay: Time spent between the output of two consecutive

solutions;

• Eppstein et al. has exponential delay;

• Tomita et al. also has exponential delay unless P = NP.
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Graphlets

• There exist many algorithms for k−graphlet enumeration.

• The best state-of-the-art algorithm has a delay of O(k2∆).

• k: size of the graphlets desired

• ∆: maximum degree of the graph

• Currently working on an improvement of this bound, using the

so called Push-Out Amortization
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Push-Out Amortization

Push-Out Amortization is a novel technique for output sensitive,

bounded-delay enumeration.

It exploits the structure of recursive

(binary partition) trees.

Theorem: Let T ∗ be the time taken by a leaf node of the

recursion tree. If all non-leaf nodes have∑
Y∈C(X )

T (Y ) ≥ αT (X )− β(|C (X )|+ 1)T ∗ α > 1, β ≥ 0

then the delay of the algorithm is bounded by O(T ∗).
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Push-Out Amortization in Short

• Child nodes should pay more than their parent;

• A non-leaf node must have at least two children;

• |leaves| ≥ |internal nodes|
• The overall cost is dominated by the cost of leaves;
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Graphlets

Our current findings are:

• A O(k2∆) delay practical algorithm;

• A O(k2) delay algorithm using push-out amortization;

• A O(1) delay algorithm using push-out amortization

(currently in development).
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Conclusions

• Enumeration is easy to think, yet extremely difficult to

optimize;

• There exists a whole hierarchy of complexity classes for

enumeration;

• Push-out amortization is a very powerful technique and can
be applied to a huge variety of enumeration problems;

• k-edge subgraphs

• All graphlets (no bounds on the size)

• Matchings

• Elimination Orderings

• . . .
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Thank You!

Thank you for your attention!

My contacts:

email: davide.rucci@phd.unipi.it

office: Room 300, Computer Science Dept. (Polo Fibonacci, ed. C, 2nd floor)
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