Community Detection in Large Graphs

Davide Rucci, PhD Student in Computer Science

May 7, 2021

University of Pisa Mauriana Pesaresi Seminar Series Given a graph G = (V, E) we say that

A community is a subset of nodes sharing "significantly many" connections with respect to the rest of the graph.

Community Detection

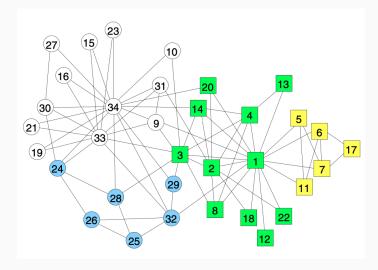


Figure 1: Real-life environment

Community Detection

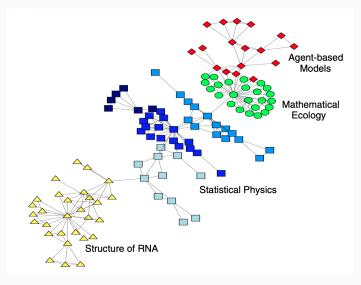


Figure 2: Co-authorships

Community Detection

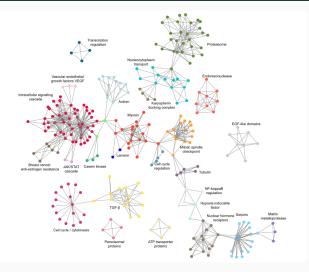
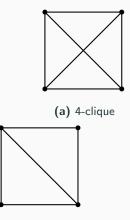


Figure 3: Protein-protein interactions

- Adjacency-based
 - Maximal Clique
 - Plexes
 - Graphlets
 - ... many others

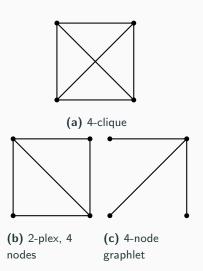
(a) 4-clique

- Adjacency-based
 - Maximal Cliques
 - Plexes
 - Graphlets
 - ... many others

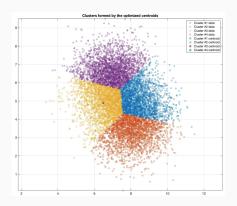


(b) 2-plex, 4 nodes

- Adjacency-based
 - Maximal Cliques
 - Plexes
 - Graphlets
 - ... many others



- Adjacency-based
 - Maximal Cliques
 - Plexes
 - Graphlets
 - ... many others
- Metric-based
 - Clusters



- Input: A graph G = (V, E), an integer k
- **Output**: A list of all the communities contained in *G* made up by (at least or exactly) *k* nodes

Listing all (maximal) cliques contained in a graph is a well-known NP-hard problem. Known algorithms include:

- Binary Partition Scheme
- Reverse Search Scheme

Listing all (maximal) cliques contained in a graph is a well-known NP-hard problem. Known algorithms include:

- Binary Partition Scheme

- Bron-Kerbosch $\rightarrow O(4^{|V|/3})$ time Tomita et al. $\rightarrow O(3^{|V|/3})$ time Eppstein et al. $\rightarrow O(d|V|3^{d/3})$ time $\left.\right\} O(|V| + q\Delta)$ space
- Reverse Search Scheme

Listing all (maximal) cliques contained in a graph is a well-known NP-hard problem. Known algorithms include:

- Binary Partition Scheme

- Bron-Kerbosch $\rightarrow O(4^{|V|/3})$ time Tomita et al. $\rightarrow O(3^{|V|/3})$ time Eppstein et al. $\rightarrow O(d|V|3^{d/3})$ time $\left.\right\} O(|V| + q\Delta)$ space
- Reverse Search Scheme
 - Conte et al. $\rightarrow \alpha \tilde{O}(\min\{|E|d, qd\Delta\})$ time, $O\left(\sqrt{|E|}\right)$ space

- Binary Partition Scheme
 - Bron-Kerbosch $ightarrow O(4^{|V|/3})$ time
 - Tomita et al. $ightarrow O(3^{|V|/3})$ time

$$O(|V|+q\Delta)$$
 space

- Eppstein et al. $ightarrow O(d|V|3^{d/3})$ time \int
- Reverse Search Scheme
 - Conte et al. $\rightarrow \alpha \tilde{O}(min\{|E|d, qd\Delta\})$ time, $O\left(\sqrt{|E|}\right)$ space
- $O(3^{|V|/3})$ is worst-case optimal (Moon-Moser graphs).

Binary Partition is a traditional technique largely adopted for enumeration.

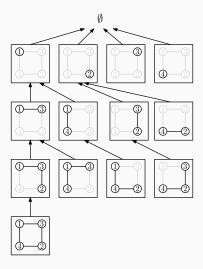
- Recursive approach
- Given an element v of the input and a partial solution S, recursively proceed with
 - $ENUM(S \cup \{x\});$
 - *ENUM*(*S*) removing *x* from the input.

The Binary Partition scheme on graphs corresponds to:

- 1. Pick $v \in V$
- 2. $ENUM(G, S \cup \{v\})$
- 3. $ENUM(G \setminus \{v\}, S)$

Reverse Search

Key idea: given a solution construct another solution using a *parent* rule. It explores the solution space.



Algorithm 1 Bron-Kerbosch Algorithm

- 1: function Bron-Kerbosch(P, R, X)
- 2: **if** $P = \emptyset$ and $X = \emptyset$ then
- 3: return $\triangleright R$ is a maximal clique
- 4: end if
- 5: for all $v \in P$ do
- 6: BRON-KERBOSCH $(P \cap N(v), R \cup \{v\}, X \cap N(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$
- 9: end for

10: end function

• Tomita et al. algorithm uses *pivoting* to achieve optimal worst-case running time

- Tomita et al. algorithm uses *pivoting* to achieve optimal worst-case running time
 - Informally, this means choosing $v \in P \cup X$ such that $|P \cap N(v)|$ is maximized, then loop through $P \setminus N(v)$.

- Tomita et al. algorithm uses *pivoting* to achieve optimal worst-case running time
 - Informally, this means choosing $v \in P \cup X$ such that $|P \cap N(v)|$ is maximized, then loop through $P \setminus N(v)$.
- Eppstein et al. proposed a variant built on top of Tomita et al.'s

- Tomita et al. algorithm uses *pivoting* to achieve optimal worst-case running time
 - Informally, this means choosing $v \in P \cup X$ such that $|P \cap N(v)|$ is maximized, then loop through $P \setminus N(v)$.
- Eppstein et al. proposed a variant built on top of Tomita et al.'s
 - It exploits a *degeneracy ordering* of *G*.

Definition: The *degeneracy* of a graph G = (V, E) is the minimum $d \in \mathbb{N}$ for which there exists an ordering of V such that every vertex has at most d neighbors *later* in the ordering.

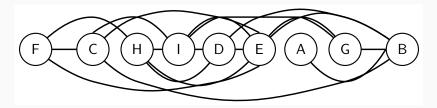


Figure 4: A graph with degeneracy d = 3

 The algorithm by Eppstein et al. shows that clique enumeration is fixed parameter tractable → O(d|V|3^{d/3});

- The algorithm by Eppstein et al. shows that clique enumeration is fixed parameter tractable $\rightarrow O(d|V|3^{d/3})$;
- *Output-sensitivity*: complexity expressed as a function of the output size;

- The algorithm by Eppstein et al. shows that clique enumeration is fixed parameter tractable $\rightarrow O(d|V|3^{d/3})$;
- *Output-sensitivity*: complexity expressed as a function of the output size;
- Delay: Time spent between the output of two consecutive solutions;

- The algorithm by Eppstein et al. shows that clique enumeration is fixed parameter tractable → O(d|V|3^{d/3});
- *Output-sensitivity*: complexity expressed as a function of the output size;
- Delay: Time spent between the output of two consecutive solutions;
- Eppstein et al. has exponential delay;

- The algorithm by Eppstein et al. shows that clique enumeration is fixed parameter tractable → O(d|V|3^{d/3});
- *Output-sensitivity*: complexity expressed as a function of the output size;
- Delay: Time spent between the output of two consecutive solutions;
- Eppstein et al. has exponential delay;
- Tomita et al. also has exponential delay unless P = NP.

• There exist many algorithms for k-graphlet enumeration.

- There exist many algorithms for k-graphlet enumeration.
- The best state-of-the-art algorithm has a delay of $O(k^2\Delta)$.
 - k: size of the graphlets desired
 - Δ : maximum degree of the graph

- There exist many algorithms for *k*-graphlet enumeration.
- The best state-of-the-art algorithm has a delay of $O(k^2\Delta)$.
 - k: size of the graphlets desired
 - Δ : maximum degree of the graph
- Currently working on an improvement of this bound, using the so called Push-Out Amortization

Push-Out Amortization is a novel technique for output sensitive, bounded-delay enumeration.

Push-Out Amortization is a novel technique for output sensitive, bounded-delay enumeration. It exploits the structure of recursive (binary partition) trees. Push-Out Amortization is a novel technique for output sensitive, bounded-delay enumeration. It exploits the structure of recursive (binary partition) trees.

Theorem: Let T^* be the time taken by a leaf node of the recursion tree. If all non-leaf nodes have

$$\sum_{Y \in C(X)} T(Y) \ge \alpha T(X) - \beta (|C(X)| + 1)T^* \qquad \alpha > 1, \beta \ge 0$$

then the delay of the algorithm is bounded by $O(T^*)$.

- Child nodes should pay more than their parent;
- A non-leaf node must have at least two children;
- $||eaves| \ge |internal nodes|$
- The overall cost is dominated by the cost of leaves;

Our current findings are:

- A $O(k^2\Delta)$ delay practical algorithm;
- A $O(k^2)$ delay algorithm using push-out amortization;
- A O(1) delay algorithm using push-out amortization (currently in development).

- Enumeration is easy to think, yet extremely difficult to optimize;
- There exists a whole hierarchy of complexity classes for enumeration;
- Push-out amortization is a very powerful technique and can be applied to a huge variety of enumeration problems;
 - k-edge subgraphs
 - All graphlets (no bounds on the size)
 - Matchings
 - Elimination Orderings
 - ...

- BK: https://doi.org/10.1145%2F362342.362367
- Tomita: https://doi.org/10.1016/j.tcs.2006.06.015
- Eppstein: https://doi.org/10.1145/2543629
- Enum. Complexity: http://bulletin.eatcs.org/index.php/ beatcs/article/view/596/605
- Reverse Search Cliques: https://doi.org/10.4230/LIPIcs.ICALP.2016.148
- Push-Out Amortization: https://link.springer.com/content/ pdf/10.1007/978-3-319-21840-3_49.pdf

Thank you for your attention!

My contacts: <u>email</u>: davide.rucci@phd.unipi.it office: Room 300, Computer Science Dept. (Polo Fibonacci, ed. C, 2nd floor)