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Machine Translation

Machine Translation (MT) is the task of translating a sentence x from
one language (the source language) to a sentence y in another
language (the target language).

How can we solve this task?
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Machine Translation

e Core idea: learn a probabilistic model from data
e Suppose we are interested in translating French — English

e We want to find the best target sentence y (English) given the
source sentence x French:

argmax, P(y | x)
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Machine Translation

What do we need to learn a translation model P(y|x) ?
1. Alarge amount of parallel data

2. Aflexible model architecture

Figure: The Rosetta stone. The same text is written in Egyptian hieroglyphs,
Demotic and Ancient Greek
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Neural machine Translation

e Neural Machine Translation (NMT) is a way to do Machine
Translation with a single end-to-end neural network

e The architecture is called a sequence-to-sequence model (aka
seq2seq) and it involves two RNNs
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Neural machine Translation
Seq2Seq Architecture
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Neural machine Translation
Seq2Seq Training
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Neural Machine Translation

e Seq2seq is trained "end-to-end" with backpropagation

e The system calculate the probability of next target word given
the source sentence x, and the target words y; available up to
now

e so NMT calculates P(y | x):

P(y [ xX) =P(yi | X)P(y2lyX)...PCyr ly1 ..., yr—1.X)
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Neural Machine Translation
Decoding

e |deally we want to find a translation of lenght T that maximizes

.
P(y | x) = |_|P(Yt | yi, ..o Vi1, X)
t=1

e An exhaustive search of the possible sequences y is not feasible:
O(V") complexity with V = vocabulary size (around 10° for
bilingual systems)

e Strategies:

- Greedy decoding
- Beam Search
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NMT Decoding

Beam Search
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Idea: At each step of the decoder keep track of the best k partial

translations (hypotheses)
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NMT Decoding

Beam Search

k is the beam size (around 10)

Each hypotheses has a score

Whenever an hypothesis contains the <END> token that

translation is complete

We stop the search when:

- We reach a cutoff length T
- We have at list a predefined number of completed translations
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NMT Summary

e Transformers are the most used architecture in NMT
- Huge feedforward neural network composed of an encoder and
decoder (same seq2seq paradigm)
- Heavy use of attention
e Attention is a general technique to compute a weighted sum of
vectors given a query
- Help the decoder focusing on relevant part of the input sentence
- Different types of attention exists (scaled, dot, etc..)
- Dramatically improves NMT systems
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NMT Automatic Evaluation
Bilingual Evaluation Understudy

e MT Systems evaluated using BLEU: output translations are

compared against one or more human references combining:

- 1-2-3-4-gram (clipped) precision
- a penalty factor for short sentences
e Everybody hates BLEU, but everybody uses it (despite its
limitation)
- simple n-gram overlapping
- no consideration of syntactic structure of the sentences

13/31



Outline

Introduction

- Machine Translation definition

Neural Machine Translation Crash-Course

- Sequence to sequence architecture
- Decoding
- NMT evaluation

e Low Resource NMT

- Corpora and domains
- Learning techniques

Conclusions

14/31



Low Resource NMT
Motivation

e More than 6000 languages in the world
e 80% of the world population don’t speak English

e Less than 5% of the population is a native English speaker
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Most spoken languages worldwide in 2021
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e Top 10 languages spoken by half of the world population
e Remaining languages spoken by the other half

e Lots of languages spoken by less than 1000 people
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How much is "Low"?

e A language is considered a low resource language if the amount
of parallel sentences is < 10* ~ 100KB

e Problematic because the size of current NMT systems is in the
order of 108 parameters

e Google’s production dataset sizes for its multilanguage NMT
system, are in the order of TB
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Data influence on translation

Data distribution over language pairs

Translation quality of 103 bilingual baselines

High Resource Languages Low Resource Languages

The data distribution over all language pairs (in log scale) and the relative translation quality (BLEU score) of the bilingual
baselines trained on each one of these specific language pairs.

source: Google Al blog
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https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html

Parallel dataset and domains
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Low Resource NMT Learning setting
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e Some data may be available only in a single language.

e Some domain are not covered at all in some languages
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Challenges

e Data availability
e Domain mismatch

e Quality of data

How do we learn in this difficult setting?
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Small data available in target language
Supervised Learning

En Sw En
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X N Encoder N Decoder ___ Cross-Entropy
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—
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human translator human reference

e Training dataset 2 = {(x,y)i}i=1, .~

e Model trained using cross entropy loss (attention-based
Transformer)

e [f N is small the model will need regularization
- Dropout
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Monolingual corpus in source language
Semi-supervised Learning

Training dataset 2 = {(x,y)i}i=1. n

e Large monolingual corpus #° = {xjs} 1
Jj=1,..,Ms

Try to model P(x) with the encoder
Loss: £ PAE(9) = —logP(x | x + n)

Pre-train encoder and use it in a supervised system

Add the Denoising loss to a supervised system 24/31



Monolingual corpus in source language
Self Training
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2. decode x ~ # ° to y and create a ned corpus
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3. retrainon 2 U .&¢°

e repeat steps 2 and 3 as long as the system improves
e Loss: Z(6) = £ (6) — AlogP(y | x + n)
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Monolingual corpus in target language
Back-Translation (BT)
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Conclusion
Wrap-up

e Training paradigm has to be adapted according to available data

e iterative BT, denoising pretraining and multilingual training
perform pretty well on low resource languages

e Combining the approaches is quite challenging
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Conclusion
Open challenges

e Data quality and domain mismatch
e Corpora sizes differences among languages

e Training huge models to exploit larger quantities of data in a

multilingual setting
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Thanks for your attention!

michele.resta@phd.unipi.it
Room 300 - CS Department, Pisa

30/31



References & Acknowledgments

[1] Sutskeveret et al. Sequence to Sequence Learning with Neural
Networks.

[2] Vaswani et al. Attention is all you need.

[3] He et al. Revisiting Self-Training for Neural Sequence Generation.
2017

[4] Liu et al. Multilingual Denoising Pre-training for Neural Machine
Translation.

[5] Sennrich et al. Improving Neural Machine Translation Models
with Monolingual Data. CoRR 2015

e Schemes of slides 6 and 7 from Christopher Manning’s NLP
course

31/31


http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1909.13788
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/1511.06709
https://arxiv.org/abs/1511.06709

