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Hypergraphs

Definition (Hypergraph)

A hypergraph H is defined as a couple (V/, E), where V is a finite
set of vertices v1,..., Vv, and E C 2|V‘\® is a set of hyperedges,

i.e. a collection of subsets of V.




Hypergraphs

Definition (Hypergraph)

A hypergraph H is defined as a couple (V/, E), where V is a finite
set of vertices v1,..., Vv, and E C 2|V‘\® is a set of hyperedges,
i.e. a collection of subsets of V.

A hypergraph is simple if it has no loop and no equal hyperedges.
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The notion of degree sequence

Definition (Degree of a vertex)

Given an hypergraph H = (V, E), the degree of a vertex v € V
is the number of hyperedges that contain v.

A hypergraph is said to be k-uniform if each hyperedge has
cardinality k.

Definition (Degree sequence)

Given a hypergraph H = (V, E), the degree sequence of H is
(di,da,...,dy), where dy > dp > - -+ > d, are the degrees of the
vertices.
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Starting problem

Starting Problem: k-Seq

Given m = (di, da, ..., d,) a non decreasing sequence of positive
integers, can 7w be the degree sequence of a k—uniform simple
hypergraph?
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State of the art

m 1960 — Erd6s and Gallai effectively characterized degree
sequences for k = 2
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State of the art

m 1960 — Erd6s and Gallai effectively characterized degree
sequences for k = 2

m 1975 — Dewdney proved a non effective condition for a
sequence to be k—graphic

m 2013 — Behrens et al. proposed a sufficient condition for a
degree sequence to be k—graphic, but this result gives no
information about the associated k—uniform hypergraphs

m 2018 — Deza et al. proved that for any fixed integer k > 3
the problem is NP—complete, so assuming P # NP it seems
also intractable to find a good characterization for 7 even for
the simplest case of 3—uniform hypegraphs.

New Goal

Assuming P # NP, find which instances are really NP—complete
and which, instead, are solvable in polynomial time.
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The matrix Mg

m Let S = (s1,...,5¢) be an array of integers.

m We define a binary matrix Ms of dimension k' x k collecting
all the distinct rows (arranged in lexicographical order) that
satisfy the following constraint: for every index i, the i-th row
of Ms has all elements equal to zero except three entries in
positions j1, jo and j3 such that s; + s, + 5, > 0.



The matrix Mg

m Let S = (s1,...,5¢) be an array of integers.

m We define a binary matrix Ms of dimension k' x k collecting
all the distinct rows (arranged in lexicographical order) that
satisfy the following constraint: for every index i, the i-th row
of Ms has all elements equal to zero except three entries in
positions j1, jo and j3 such that s; + s, + 5, > 0.

For instance, the matrix Mg of S = (5,2,2, -1, —4,—4) is

5 2 2 -1 —4 —47
1 1 1 0 0 0
11 0 1 0 0
1 1 0 o0 1 0
1 1 0 o0 0 1
10 1 1 0 0
1 0 1 o0 1 0
1 0 1 o0 0 1
0 1 1 1 0 0
7 5 5 3 2 2 ]




The matrix Mg

m Ms can be regarded as the incidence matrix of a (simple)
3-uniform hypergraph Hs = (V, E) such that the element
Ms(i,j) = 1 if and only if the hyperedge e; € E contains the

vertex vj.



The matrix Mg

m Ms can be regarded as the incidence matrix of a (simple)
3-uniform hypergraph Hs = (V, E) such that the element
Ms(i,j) = 1 if and only if the hyperedge e; € E contains the
vertex v;.

m Let s = (p1, ..., px) denote the degree sequence of Hs. It

holds 3K, Ms(i,j) = p;.



Problems

Problem 1

Determine the computational complexity of 3-Seq restricted to the
class of the instances 7.



Problems

Problem 1

Determine the computational complexity of 3-Seq restricted to the
class of the instances 7.

Problem 2

Characterize the 3-sequences whose related 3-uniform hypergraphs
are unique up to isomorphism. Determine the computational
complexity of 3-Seq restricted to that class of instances.
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Saind arrays

Definition (Saind array)

For any n > 2, the saind array of size n is an integer array
S(n)=(n,n—1,n—2,...,2—2n).



Saind arrays

For any n > 2, the saind array of size n is an integer array
S(n)=(n,n—1,n—2,...,2—2n).

Index 1 2 3 4 5 6 7 8

S 3 2 1 0 -1 -2 -3 —4
11 1 0 0 0 0 0
11 0 1 0 0 0 O
11 0 0 1 0 0 0
11 0 0 0 1 0 O
11 0 0 0 0 1 0
110 0 0 0 0 1
10 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 0 1 0 0 1 0 O
10 1 0 0 0 1 0
10 0 1 1 0 0 0
i 0 0 8 U B (U]
o 1 1 1 0 0 0 0
o 1 1 0 1 0 0 0
0 1 1 0 0 1 0 0
o 1 0 1 1 0 0 0

vg 12 10 8 6 5 4 2 1
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m As n increases, the entries of Q(n) give rise to an infinite
sequence: the Saind sequence (w,),>1.



Queue and Saind sequence

n=2-r(2) = (43,22, 1)
n=3- m(3)=(12,10,8,6,5,4, 2, 1)
n=4 — (4) = (25,21,18,15,12,10,9, 6, 4, 2, 1)

n=5—
m(5) = (42,37,32,28,24,20,17,15,12, 9, 6, 4, 2, 1)

As n increases, the entries of Q(n) give rise to an infinite
sequence: the Saind sequence (w,),>1.

m The first few terms of w,, are:
1,2,4,6,9,12, 16,20, 25, 30, 36, 42, 49, 56, 64, 72, 81,90, 100 . ..
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The queue-triads are: (1,2,6),(1,3,6),(1,4,6),(2,3,6).



Queue triads

Queue triads of size n and pointer k can be computed by the
following algorithm:

Algorithm 1 Algorithm that calculates queue-triads
Input: n

Output: All the queue-triads of size n
k0:3~”7+1 if n is odd
ke =382 41, k) = 3882 if if n is even

Step 2: We calculate the values of i for the pointers determined in Step 1:

nodd: 1< < 3'"’2’)“ ko, odd
1<i< 3'"’2’”1 ko even

Step 1: We determine the pointers:

1<z§3" ktl  kodd
1<i< @ k k even
Step 3: We calculate j: i +1<j < 3~n— k—(i—2).

- n even, and k € {k.,k.}: {




OEIS and A002620

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

002620 Soarch s
G The On-Line ences)
Dlsplnymgl 10 of 366 results found. pose 12345678910..37
‘Sort: elevance | eferences | number | modified | rsated _ Forma: fong | short daa
Quarter-squares: floor(n/2)*ceiling(n/2). Equivalently, floor(n\2/4). =

81, 90, 100, 110, 121,
342, 361, 380, 400,

A002620
(Formerly M0998 N0374)
36, 42, 49, 56, 64, 72,
756, 784, 812 (st

, 9, 12, 16, 20, 25, 30,
256, 272, 289, 306, 324,

0,0,1, 24,6
152, 144, 156, 169, 162, 196, 210, 225, 240,
420, 411, 462, 404, S06, 529, 52, 576, GO0, 625, 650, 676, T02, T2,
sraph e teat; intermal format)

number of multigraphs with loops on 2 nodes wi
5 1/((1-%)°2*(1-x"2))]. Also number of 2-covers

orrsET
CoMMENTS b(n)
es [s0 g.f. for b(n)
Sn -set; slso nusbar of 2 ¥ n binacy matrices ¥ith 2o sero colmme up
00

For n = 2m, the maximum is achieved by the bipartite
graph K(m, m); for n = 2m + 1, the maximum is achieved by the bipartite
graph K(m m & 1). - Avi Perets (njk(AT)netvision.net.il), Mer 18 2001
a(n) is the number of arithmetic progressions of any mean which
can be extracted £rom the set of the first 0 naturel nunbers. (scarting
rom 1). - Santi Spadaro, Jul 13
Ihis s aiso the order aimension of the (strong) prunat order on the Coxeter
S n). - Nathan Readin

group A_{n-1}
, mar 07 2002
31 m 3) =1t (i) ds
n. - Benoit

edge
of

to row and column permutation. - V)

) i £ ot adges that a teiangle-tree gra

5 denote the o X 8 matrix a(L.d) = 2 it §
) =0 i © ok, than ane2) = den

Cloitre, Jun 19 200:
Sums of pairs of neighboring terms are triangular numbers in increasing
2002

: - dmamath urthy, Mg 19
ion in standard chess, minimum

(column). Beyond a(6), the board ai
capture are assumed to be extended enough to accomplish this task. - Rick
Shepherd, Sep 17 2002
For example, i 1 and one capture can produce "doubled pawns®, a(3) = 2
and two captures is sufficient to produce tripled pawns, etc. (Of course
i ves are also necessary from the

other, uncounted, non-capturing pawn
starting position in order to put three or more pawns on a given file.) -




Saind sequence and A002620

For any m > 1, we have w,, = LTJ . {T]
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Integer partitions

Definition (Integer partitions)

A partition of a positive integer n is a sequence of positive
integers (A1, A2, ..., Am), such that A\; > X\p > --- > A\, and
A+ X4+ Ap=n

A summand in a partition is called a part.



Integer partitions

Definition (Integer partitions)

A partition of a positive integer n is a sequence of positive
integers (A1, A2, ..., Am), such that A\; > X\p > --- > A\, and
A+ X4+ Ap=n

A summand in a partition is called a part.
If P(i, k) is the number of integer partitions of / into k parts, and if
k = 2, then

a(n)=>_P(i,2)
i=2

where a(n) is the n — th number of the sequence A002620.



Integer partitions and Queue triads

Proposition

For any n > 2, there is a bijection between the family of queue
triads of size n and pointer k and the one of integer partitions in
two parts of the integers 2,3,..., k — 2.
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(1,2,6) — (1,1)
Indeed:



Integer partitions and Queue triads

Proposition

For any n > 2, there is a bijection between the family of queue
triads of size n and pointer k and the one of integer partitions in
two parts of the integers 2,3,..., k — 2.

We define the function f as follows: given a queue triad
t = (x, y, k), the corresponding integer partition 7(t) = (g, p) is
obtained by setting g =y — 1 and p = x.

Example: From queue-triads to integer partitions in 2 parts

(1,3,6) — (2,1)
Indeed:



Integer partitions and Queue triads

Proposition

For any n > 2, there is a bijection between the family of queue
triads of size n and pointer k and the one of integer partitions in
two parts of the integers 2,3,..., k — 2.

We define the function f as follows: given a queue triad
t = (x, y, k), the corresponding integer partition 7(t) = (g, p) is
obtained by setting g =y — 1 and p = x.

Example: From queue-triads to integer partitions in 2 parts

(1,4,6) — (3,1)
Indeed:



Integer partitions and Queue triads

Proposition

For any n > 2, there is a bijection between the family of queue
triads of size n and pointer k and the one of integer partitions in
two parts of the integers 2,3,..., k — 2.

We define the function f as follows: given a queue triad
t = (x, y, k), the corresponding integer partition 7(t) = (g, p) is
obtained by setting g =y — 1 and p = x.

Example: From queue-triads to integer partitions in 2 parts

(2,3,6) = (2,2)
Indeed:



Symmetric Dyck paths with 3 peaks

Definition (Dyck path)

A Dyck path of semi-length n is a path P of length 2n in the
positive quarter plane that uses UP steps U = (1,1) and DOWN
steps D = (1, —1) starting at the origin and returning to the x-axis.

A particular subclass of Dyck paths is formed by Dyck paths of
length 2n that are symmetric, which means that they are
symmetrical with the respect to the axis of symmetry which passes
through the upper end of the n — th step and it is parallel to the
y-axis.



Symmetric Dyck paths with 3 peaks and Queue triads

Proposition

For any n, the family of queue triads with size n and pointer k is in
bijection with symmetric Dyck paths with exactly three peaks and
semi-length ¢ = (3n — 1) — k + 3.
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Symmetric Dyck paths with 3 peaks and Queue triads

Proposition

For any n, the family of queue triads with size n and pointer k is in
bijection with symmetric Dyck paths with exactly three peaks and
semi-length ¢ = (3n — 1) — k + 3.

Example: From queue-triads to prefixes

For example, the queue triads of size 3 and pointer 6, i.e. (1,2,6),
(1,3,6), (1,4,6), (2,3,6), are mapped onto the paths:

(1,2,6) (1,3,6) (1,4,6) (2,3,6)



Bijections in the case of 3—uniform hypergraphs

Symmetric Dyck paths of
semilength d with three
peaks

Integer partitions in two
parts of the integers
23,03 - (% + 1 if
n is odd and of the integers
2.3,..., 3-(%2) + 2 and

Queue-triads Sequence A002620

even

Bracelets with one blue
bead, two red beads and
vellow beads

Genotype frequency vec-
tors for a sample of
p diploid individuals at
a biallelic genetic locus
with a specific major al-
lele




Future developments

Study of sequences similar to Saind arrays, starting with a slightly
different array and analyzing the combinatorial properties of the
corresponding degree sequences.

Array Number sequence First terms
(n,mn—1,n—1,...,1—2n,1— 2n) A035608 1,5, 10,18, 27, 39, 52, 68, 85, . ..
(n,n,n,...,—n,—n, —n) A079079 3,6, 12,24, 42,63, 90,120 . ..
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