Combinatorial properties of degree sequences of 3 -uniform hypergraphs arising from saind sequences

> Giulia Palma
> giulia.palma@phd.unipi.it

PhD in Computer Science at Universitá di Pisa
January 15, 2021

Outline for section

1 Main notions and State of the art

2 Our findings: degree sequences of 3-uniform hypergraphs arising from saind sequences

3 Conclusions and future developments

2

Hypergraphs

Definition (Hypergraph)
A hypergraph \mathcal{H} is defined as a couple (V, E), where V is a finite set of vertices v_{1}, \ldots, v_{n}, and $E \subset 2^{|V|} \backslash \emptyset$ is a set of hyperedges, i.e. a collection of subsets of V.

Hypergraphs

Definition (Hypergraph)

A hypergraph \mathcal{H} is defined as a couple (V, E), where V is a finite set of vertices v_{1}, \ldots, v_{n}, and $E \subset 2^{|V|} \backslash \emptyset$ is a set of hyperedges, i.e. a collection of subsets of V.

A hypergraph is simple if it has no loop and no equal hyperedges.

The notion of degree sequence

Definition (Degree of a vertex)

Given an hypergraph $\mathcal{H}=(V, E)$, the degree of a vertex $v \in V$ is the number of hyperedges that contain v.

The notion of degree sequence

Definition (Degree of a vertex)

Given an hypergraph $\mathcal{H}=(V, E)$, the degree of a vertex $v \in V$ is the number of hyperedges that contain v.

A hypergraph is said to be k-uniform if each hyperedge has cardinality k.

The notion of degree sequence

Definition (Degree of a vertex)

Given an hypergraph $\mathcal{H}=(V, E)$, the degree of a vertex $v \in V$ is the number of hyperedges that contain v.

A hypergraph is said to be k-uniform if each hyperedge has cardinality k.

Definition (Degree sequence)

Given a hypergraph $\mathcal{H}=(V, E)$, the degree sequence of \mathcal{H} is $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ are the degrees of the vertices.

4

Starting problem

Starting Problem: k-Seq

Given $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ a non decreasing sequence of positive integers, can π be the degree sequence of a k-uniform simple hypergraph?

5

State of the art

■ $1960 \rightarrow$ Erdös and Gallai effectively characterized degree sequences for $k=2$

State of the art

■ $1960 \rightarrow$ Erdös and Gallai effectively characterized degree sequences for $k=2$
■ $1975 \rightarrow$ Dewdney proved a non effective condition for a sequence to be k-graphic

State of the art

■ $1960 \rightarrow$ Erdös and Gallai effectively characterized degree sequences for $k=2$

- $1975 \rightarrow$ Dewdney proved a non effective condition for a sequence to be k-graphic
■ $2013 \rightarrow$ Behrens et al. proposed a sufficient condition for a degree sequence to be k-graphic, but this result gives no information about the associated k-uniform hypergraphs

State of the art

■ $1960 \rightarrow$ Erdös and Gallai effectively characterized degree sequences for $k=2$
■ $1975 \rightarrow$ Dewdney proved a non effective condition for a sequence to be k-graphic

- $2013 \rightarrow$ Behrens et al. proposed a sufficient condition for a degree sequence to be k-graphic, but this result gives no information about the associated k-uniform hypergraphs
- $2018 \rightarrow$ Deza et al. proved that for any fixed integer $k \geq 3$ the problem is $N P$-complete, so assuming $P \neq N P$ it seems also intractable to find a good characterization for π even for the simplest case of 3 -uniform hypegraphs.

State of the art

■ $1960 \rightarrow$ Erdös and Gallai effectively characterized degree sequences for $k=2$
■ $1975 \rightarrow$ Dewdney proved a non effective condition for a sequence to be k-graphic

- $2013 \rightarrow$ Behrens et al. proposed a sufficient condition for a degree sequence to be k-graphic, but this result gives no information about the associated k-uniform hypergraphs
- $2018 \rightarrow$ Deza et al. proved that for any fixed integer $k \geq 3$ the problem is $N P$-complete, so assuming $P \neq N P$ it seems also intractable to find a good characterization for π even for the simplest case of 3 -uniform hypegraphs.

New Goal

Assuming $P \neq N P$, find which instances are really $N P$-complete and which, instead, are solvable in polynomial time.

The matrix M_{S}

- Let $S=\left(s_{1}, \ldots, s_{k}\right)$ be an array of integers.
- We define a binary matrix M_{S} of dimension $k^{\prime} \times k$ collecting all the distinct rows (arranged in lexicographical order) that satisfy the following constraint: for every index i, the i-th row of M_{S} has all elements equal to zero except three entries in positions j_{1}, j_{2} and j_{3} such that $s_{j_{1}}+s_{j_{2}}+s_{j_{3}}>0$.

The matrix M_{S}

- Let $S=\left(s_{1}, \ldots, s_{k}\right)$ be an array of integers.
- We define a binary matrix M_{S} of dimension $k^{\prime} \times k$ collecting all the distinct rows (arranged in lexicographical order) that satisfy the following constraint: for every index i, the i-th row of M_{S} has all elements equal to zero except three entries in positions j_{1}, j_{2} and j_{3} such that $s_{j_{1}}+s_{j_{2}}+s_{j_{3}}>0$.

For instance, the matrix M_{S} of $S=(5,2,2,-1,-4,-4)$ is
$\left[\begin{array}{cccccc}5 & 2 & 2 & -1 & -4 & -4 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ \hline 7 & 5 & 5 & 3 & 2 & 2\end{array}\right]$

The matrix M_{S}

- M_{S} can be regarded as the incidence matrix of a (simple) 3-uniform hypergraph $\mathcal{H}_{S}=(V, E)$ such that the element $M_{S}(i, j)=1$ if and only if the hyperedge $e_{i} \in E$ contains the vertex v_{j}.

The matrix M_{S}

- M_{S} can be regarded as the incidence matrix of a (simple) 3-uniform hypergraph $\mathcal{H}_{S}=(V, E)$ such that the element $M_{S}(i, j)=1$ if and only if the hyperedge $e_{i} \in E$ contains the vertex v_{j}.
■ Let $\pi_{S}=\left(p_{1}, \ldots, p_{k}\right)$ denote the degree sequence of \mathcal{H}_{S}. It holds $\sum_{i=1}^{k^{\prime}} M_{S}(i, j)=p_{j}$.

Problems

Problem 1

Determine the computational complexity of 3-Seq restricted to the class of the instances π_{S}.

Problems

Problem 1

Determine the computational complexity of 3-Seq restricted to the class of the instances π_{s}.

Problem 2

Characterize the 3 -sequences whose related 3-uniform hypergraphs are unique up to isomorphism. Determine the computational complexity of $3-\mathrm{Seq}$ restricted to that class of instances.

9

Saind arrays

Definition (Saind array)

For any $n \geq 2$, the saind array of size n is an integer array $S(n)=(n, n-1, n-2, \ldots, 2-2 n)$.

Saind arrays

Definition (Saind array)

For any $n \geq 2$, the saind array of size n is an integer array $S(n)=(n, n-1, n-2, \ldots, 2-2 n)$.

Index	1	2	3	4	5	6	7	8
$s_{3}=$	3	2	1	0	-1	-2	-3	-4
	1	1	1	0	0	0	0	0
	1	1	0	1	0	0	0	0
	1	1	0	0	1	0	0	0
	1	1	0	0	0	1	0	0
	1	1	0	0	0	0	1	0
1	1	0	0	0	0	0	1	
1	0	1	1	0	0	0	0	
	1	0	1	0	1	0	0	0
1	0	1	0	0	1	0	0	
1	0	1	0	0	0	1	0	
1	0	0	1	1	0	0	0	
	1	0	0	1	0	1	0	0
0	1	1	1	0	0	0	0	
	0	1	1	0	1	0	0	0
0	1	1	0	0	1	0	0	
0	1	0	1	1	0	0	0	
$v_{3}=$	10	8	6	5	4	2	1	

Queue and Saind sequence

Queue of v_{n}

$$
n=2 \rightarrow \pi(2)=(4,3,2,2,1)
$$

Queue and Saind sequence

Queue of v_{n}

$$
\begin{aligned}
& n=2 \rightarrow \pi(2)=(4,3,2,2,1) \\
& n=3 \rightarrow \pi(3)=(12,10,8,6,5,4,2,1)
\end{aligned}
$$

Queue and Saind sequence

Queue of v_{n}

$$
\begin{aligned}
& n=2 \rightarrow \pi(2)=(4,3,2,2,1) \\
& n=3 \rightarrow \pi(3)=(12,10,8,6,5,4,2,1) \\
& n=4 \rightarrow \pi(4)=(25,21,18,15,12,10,9,6,4,2,1)
\end{aligned}
$$

Queue and Saind sequence

Queue of v_{n}

$$
\begin{aligned}
& n=2 \rightarrow \pi(2)=(4,3,2,2,1) \\
& n=3 \rightarrow \pi(3)=(12,10,8,6,5,4,2,1) \\
& n=4 \rightarrow \pi(4)=(25,21,18,15,12,10,9,6,4,2,1) \\
& n=5 \rightarrow \\
& n(5)=(42,37,32,28,24,20,17,15,12,9,6,4,2,1)
\end{aligned}
$$

Queue and Saind sequence

Queue of v_{n}

■ $n=2 \rightarrow \pi(2)=(4,3,2,2,1)$
■ $n=3 \rightarrow \pi(3)=(12,10,8,6,5,4,2,1)$
■ $n=4 \rightarrow \pi(4)=(25,21,18,15,12,10,9,6,4,2,1)$

- $n=5 \rightarrow$

$$
\pi(5)=(42,37,32,28,24,20,17,15,12,9,6,4,2,1)
$$

- As n increases, the entries of $Q(n)$ give rise to an infinite sequence: the Saind sequence $\left(w_{n}\right)_{n \geq 1}$.

Queue and Saind sequence

Queue of v_{n}

■ $n=2 \rightarrow \pi(2)=(4,3,2,2,1)$

- $n=3 \rightarrow \pi(3)=(12,10,8,6,5,4,2,1)$

■ $n=4 \rightarrow \pi(4)=(25,21,18,15,12,10,9,6,4,2,1)$

- $n=5 \rightarrow$
$\pi(5)=(42,37,32,28,24,20,17,15,12,9,6,4,2,1)$
- As n increases, the entries of $Q(n)$ give rise to an infinite sequence: the Saind sequence $\left(w_{n}\right)_{n \geq 1}$.
- The first few terms of w_{n} are: $1,2,4,6,9,12,16,20,25,30,36,42,49,56,64,72,81,90,100 \ldots$

Queue triads

Index	1	2	3	4	5	6	7	8
$s_{3}=$	3	2	1	0	-1	-2	-3	-4
	1	1	1	0	0	0	0	0
	1	1	0	1	0	0	0	0
	1	1	0	0	1	0	0	0
	1	1	0	0	0	1	0	0
	1	1	0	0	0	0	1	0
	1	1	0	0	0	0	0	1
1	0	1	1	0	0	0	0	
1	0	1	0	1	0	0	0	
	1	0	1	0	0	1	0	0
1	0	1	0	0	0	1	0	
1	0	0	1	1	0	0	0	
	1	0	0	1	0	1	0	0
	0	1	1	1	0	0	0	0
	0	1	1	0	1	0	0	0
	0	1	1	0	0	1	0	0
0	1	0	1	1	0	0	0	
$v_{3}=$	12	10	8	6	5	4	2	1

The queue-triads are: $(1,2,6),(1,3,6),(1,4,6),(2,3,6)$.

Queue triads

Queue triads of size n and pointer k can be computed by the following algorithm:

```
Algorithm 1 Algorithm that calculates queue-triads
Input: \(n\)
Output: All the queue-triads of size \(n\)
Step 1: We determine the pointers: \(\begin{cases}k_{o}=3 \cdot \frac{n+1}{2} & \text { if } n \text { is odd } \\ k_{e}=\frac{3 n+2}{2}+1, k_{e}^{\prime}=\frac{3 n+2}{2} & \text { if if } n \text { is even }\end{cases}\)
```

Step 2: We calculate the values of i for the pointers determined in Step 1:

- n odd: $\begin{cases}1 \leq i \leq \frac{3 \cdot n-k}{2} & k_{o} \text { odd } \\ 1 \leq i \leq \frac{3 \cdot n-k+1}{2} & k_{o} \text { even }\end{cases}$
- n even, and $k \in\left\{k_{e}, k_{e}^{\prime}\right\}: \begin{cases}1 \leq i \leq \frac{3 \cdot n-k+1}{2} & k \text { odd } \\ 1 \leq i \leq \frac{3 \cdot n-k}{2} & k \text { even }\end{cases}$

Step 3: We calculate $j: i+1 \leq j \leq 3 \cdot n-k-(i-2)$.

OEIS and A002620

${ }^{013627}$ THE ON-LINE ENCYCLOPEDIA ${ }_{10221121}^{23} \mathrm{OE}_{1}^{213} \mathrm{OF}$ INTEGER SEQUENCES ${ }^{\text {® }}{ }^{(1)}$

founded in 1964 by N. J. A. Sloane

a002620

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: $\mathbf{a 0 0 2 6 2 0}$
Displaying 1-10 of 366 results found. page $12345678910 \ldots 37$
Sort: relevance I references I number I modified I created Format: long I short 1 data
Quarter-squares: floor($\mathrm{n} / 2)^{*}$ ceiling($\mathrm{n} / 2$). Equivalently, floor($\mathrm{n}^{\wedge} 2 / 4$).
(Formerly M0998 N0374)
$0,0,1,2,4,6,9,12,16,20,25,30,36,42,49,56,64,72,81,90,100,110,121$, $132,144,156,169,182,196,210,225,240,256,272,289,306,324,342,361,380,400$, $420,441,462,484,506,529,552,576,600,625,650,676,702,729,756,784,812$ (list;
OFFSET
COMMENTS 0,4
COMMENTS $\quad b(n)=A 002620(n+2)=$ number of multigraphs with loops on 2 nodes with n edges [so $\mathrm{g} . \mathrm{f}$. for $\mathrm{b}(\mathrm{n})$ is $\left.1 /\left((1-\mathrm{x})^{\wedge} 2^{\star}\left(1-\mathrm{x}^{\wedge} 2\right)\right)\right]$. Also number of 2 -covers
of an n-set; also number of $2 \mathrm{x} n$ binary matrices with no zero columns up to row and column permutation. - Vladeta Jovovic. Jun 082000
$a(n)$ is also the maximal number of edges that a triangle-free graph of n vertices can have. For $\mathrm{n}=2 \mathrm{~m}$, the maximum is achieved by the bipartite graph $\mathrm{K}(\mathrm{m}, \mathrm{m})$; for $\mathrm{n}=2 \mathrm{~m}+1$, the maximum is achieved by the bipartite graph $\mathrm{K}(\mathrm{m}, \mathrm{m}+1)$. - Avi Peretz ($\mathrm{njk}($ AT $)$ netvision.net.il), Mar 182001
$a(n)$ is the number of arithmetic progressions of 3 terms and any mean which can be extracted from the set of the first n natural numbers (starting from 1). - Santi Spadaro, Jul 132001
This is also the order dimension of the (strong) Bruhat order on the coxeter group A_ $\{\mathrm{n}-1\}$ (the symmetric group S_n). - Nathan Reading
(reading(AT)math.umn.edu), Mar 072002
Let $M_{-} n$ denote the $n X n$ matrix $m(i, j)=2$ if $i=j ; m(i, j)=1$ if $(i+j)$ is ven; $m(i, j)=0$ if $i+j$ is odd, then $a(n+2)=\operatorname{det} M n$. - Benoit cloitre, Jun 192002
Sums of pairs of neighboring terms are triangular numbers in increasing order. - Amarnath Murthy, Aug 192002
Also, from the starting position in standard chess, minimum number of captures by pawns of the same color to place n of them on the same file column). Beyond a(6), the board and number of pieces available for apture are assumed to be extended enough to accomplish this task. - Rick c. Shepherd, Sep 172002

For example, $a(2)=1$ and one capture can produce "doubled pawns", $a(3)=2$ and two captures is sufficient to produce tripled pawns, etc. (Of course other, uncounted, non-capturing pawn moves are also necessary from the starting position in order to put three or more pawns on a given file.) -

Saind sequence and A002620

Theorem

For any $m \geq 1$, we have $w_{m}=\left\lfloor\frac{m+1}{2}\right\rfloor \cdot\left\lceil\frac{m+1}{2}\right\rceil$.

Integer partitions

Definition (Integer partitions)

A partition of a positive integer n is a sequence of positive integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$, such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$ and $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}=n$.

A summand in a partition is called a part.

Integer partitions

Definition (Integer partitions)

A partition of a positive integer n is a sequence of positive integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$, such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$ and $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}=n$.

A summand in a partition is called a part. If $P(i, k)$ is the number of integer partitions of i into k parts, and if $k=2$, then

$$
a(n)=\sum_{i=2}^{n} P(i, 2)
$$

where $a(n)$ is the $n-t h$ number of the sequence $A 002620$.

Integer partitions and Queue triads

Proposition

For any $n \geq 2$, there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers $2,3, \ldots, k-2$.

Integer partitions and Queue triads

Proposition

For any $n \geq 2$, there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers $2,3, \ldots, k-2$.

We define the function f as follows: given a queue triad $t=(x, y, k)$, the corresponding integer partition $f(t)=(g, p)$ is obtained by setting $g=y-1$ and $p=x$.

Integer partitions and Queue triads

Proposition

For any $n \geq 2$, there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers $2,3, \ldots, k-2$.

We define the function f as follows: given a queue triad $t=(x, y, k)$, the corresponding integer partition $f(t)=(g, p)$ is obtained by setting $g=y-1$ and $p=x$.

Example: From queue-triads to integer partitions in 2 parts
$(1,2,6) \rightarrow(1,1)$
Indeed:

$$
\begin{gathered}
g=2-1=1 \\
p=1
\end{gathered}
$$

Integer partitions and Queue triads

Proposition

For any $n \geq 2$, there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers $2,3, \ldots, k-2$.

We define the function f as follows: given a queue triad $t=(x, y, k)$, the corresponding integer partition $f(t)=(g, p)$ is obtained by setting $g=y-1$ and $p=x$.

Example: From queue-triads to integer partitions in 2 parts
$(1,3,6) \rightarrow(2,1)$
Indeed:

$$
\begin{gathered}
g=3-1=2 \\
p=1
\end{gathered}
$$

Integer partitions and Queue triads

Proposition

For any $n \geq 2$, there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers $2,3, \ldots, k-2$.

We define the function f as follows: given a queue triad $t=(x, y, k)$, the corresponding integer partition $f(t)=(g, p)$ is obtained by setting $g=y-1$ and $p=x$.

Example: From queue-triads to integer partitions in 2 parts
$(1,4,6) \rightarrow(3,1)$
Indeed:

$$
\begin{gathered}
g=4-1=3 \\
p=1
\end{gathered}
$$

Integer partitions and Queue triads

Proposition

For any $n \geq 2$, there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers $2,3, \ldots, k-2$.

We define the function f as follows: given a queue triad $t=(x, y, k)$, the corresponding integer partition $f(t)=(g, p)$ is obtained by setting $g=y-1$ and $p=x$.

Example: From queue-triads to integer partitions in 2 parts
$(2,3,6) \rightarrow(2,2)$
Indeed:

$$
\begin{gathered}
g=3-1=2 \\
p=2
\end{gathered}
$$

Symmetric Dyck paths with 3 peaks

Definition (Dyck path)

A Dyck path of semi-length n is a path P of length $2 n$ in the positive quarter plane that uses $U P$ steps $U=(1,1)$ and DOWN steps $D=(1,-1)$ starting at the origin and returning to the x-axis.

A particular subclass of Dyck paths is formed by Dyck paths of length $2 n$ that are symmetric, which means that they are symmetrical with the respect to the axis of symmetry which passes through the upper end of the n - th step and it is parallel to the y-axis.

Symmetric Dyck paths with 3 peaks and Queue triads

Proposition

For any n, the family of queue triads with size n and pointer k is in bijection with symmetric Dyck paths with exactly three peaks and semi-length $\ell=(3 n-1)-k+3$.

Symmetric Dyck paths with 3 peaks and Queue triads

Proposition

For any n, the family of queue triads with size n and pointer k is in bijection with symmetric Dyck paths with exactly three peaks and semi-length $\ell=(3 n-1)-k+3$.

Symmetric Dyck paths with 3 peaks and Queue triads

Proposition

For any n, the family of queue triads with size n and pointer k is in bijection with symmetric Dyck paths with exactly three peaks and semi-length $\ell=(3 n-1)-k+3$.

Example: From queue-triads to prefixes

For example, the queue triads of size 3 and pointer 6 , i.e. $(1,2,6)$, $(1,3,6),(1,4,6),(2,3,6)$, are mapped onto the paths:

$(1,2,6)$

$(1,3,6)$

$(1,4,6)$

$(2,3,6)$

Bijections in the case of 3-uniform hypergraphs

Future developments

Study of sequences similar to Saind arrays, starting with a slightly different array and analyzing the combinatorial properties of the corresponding degree sequences.

Array	Number sequence	First terms
$(n, n, n-1, n-1, \ldots, 1-2 n, 1-2 n)$	A035608	$1,5,10,18,27,39,52,68,85, \ldots$
$(n, n, n, \ldots,-n,-n,-n)$	A079079	$3,6,12,24,42,63,90,120 \ldots$

Thank youn!

Giulia Palma
giulia.palma@phd.unipi.it

