Combinatorial properties of degree sequences of 3-uniform hypergraphs arising from saind sequences

## Giulia Palma giulia.palma@phd.unipi.it

PhD in Computer Science at Universitá di Pisa

January 15, 2021

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

## 1 Main notions and State of the art

**2** Our findings: degree sequences of 3-uniform hypergraphs arising from saind sequences

3 Conclusions and future developments

# Hypergraphs

## Definition (Hypergraph)

A hypergraph  $\mathcal{H}$  is defined as a couple (V, E), where V is a finite set of vertices  $v_1, \ldots, v_n$ , and  $E \subset 2^{|V|} \setminus \emptyset$  is a set of hyperedges, i.e. a collection of subsets of V.

# Hypergraphs

## Definition (Hypergraph)

A hypergraph  $\mathcal{H}$  is defined as a couple (V, E), where V is a finite set of vertices  $v_1, \ldots, v_n$ , and  $E \subset 2^{|V|} \setminus \emptyset$  is a set of hyperedges, i.e. a collection of subsets of V.

A hypergraph is simple if it has no loop and no equal hyperedges.



## Definition (Degree of a vertex)

Given an hypergraph  $\mathcal{H} = (V, E)$ , the **degree of a vertex**  $v \in V$  is the number of hyperedges that contain v.

## Definition (Degree of a vertex)

Given an hypergraph  $\mathcal{H} = (V, E)$ , the **degree of a vertex**  $v \in V$  is the number of hyperedges that contain v.

A hypergraph is said to be k-uniform if each hyperedge has cardinality k.

## Definition (Degree of a vertex)

Given an hypergraph  $\mathcal{H} = (V, E)$ , the **degree of a vertex**  $v \in V$  is the number of hyperedges that contain v.

A hypergraph is said to be k-uniform if each hyperedge has cardinality k.

## Definition (Degree sequence)

Given a hypergraph  $\mathcal{H} = (V, E)$ , the **degree sequence** of  $\mathcal{H}$  is  $(d_1, d_2, \ldots, d_n)$ , where  $d_1 \ge d_2 \ge \cdots \ge d_n$  are the degrees of the vertices.

## Starting Problem: k-Seq

Given  $\pi = (d_1, d_2, ..., d_n)$  a non decreasing sequence of positive integers, can  $\pi$  be the degree sequence of a k-uniform simple hypergraph?

■ 1960 → Erdös and Gallai effectively characterized degree sequences for k = 2

- 1960 → Erdös and Gallai effectively characterized degree sequences for *k* = 2
- 1975 → Dewdney proved a non effective condition for a sequence to be k-graphic

- 1960 → Erdös and Gallai effectively characterized degree sequences for *k* = 2
- 1975 → **Dewdney** proved a non effective condition for a sequence to be *k*-graphic
- 2013 → Behrens et al. proposed a sufficient condition for a degree sequence to be k-graphic, but this result gives no information about the associated k-uniform hypergraphs

- 1960 → Erdös and Gallai effectively characterized degree sequences for k = 2
- 1975 → Dewdney proved a non effective condition for a sequence to be k-graphic
- 2013 → Behrens et al. proposed a sufficient condition for a degree sequence to be k-graphic, but this result gives no information about the associated k-uniform hypergraphs
- 2018  $\rightarrow$  **Deza** et al. proved that for any fixed integer  $k \ge 3$  the problem is *NP*-complete, so assuming  $P \ne NP$  it seems also intractable to find a good characterization for  $\pi$  even for the simplest case of 3-uniform hypegraphs.

- 1960 → Erdös and Gallai effectively characterized degree sequences for *k* = 2
- 1975 → **Dewdney** proved a non effective condition for a sequence to be *k*-graphic
- 2013 → Behrens et al. proposed a sufficient condition for a degree sequence to be k-graphic, but this result gives no information about the associated k-uniform hypergraphs
- 2018  $\rightarrow$  **Deza** et al. proved that for any fixed integer  $k \ge 3$  the problem is *NP*-complete, so assuming  $P \ne NP$  it seems also intractable to find a good characterization for  $\pi$  even for the simplest case of 3-uniform hypegraphs.

#### New Goal

Assuming  $P \neq NP$ , find which instances are really NP-complete and which, instead, are solvable in polynomial time.

## The matrix $M_S$

• Let  $S = (s_1, \ldots, s_k)$  be an array of integers.

• We define a binary matrix  $M_S$  of dimension  $k' \times k$  collecting all the distinct rows (arranged in lexicographical order) that satisfy the following constraint: for every index *i*, the *i*-th row of  $M_S$  has all elements equal to zero except three entries in positions  $j_1$ ,  $j_2$  and  $j_3$  such that  $s_{j_1} + s_{j_2} + s_{j_3} > 0$ .

# The matrix $M_S$

• Let  $S = (s_1, \ldots, s_k)$  be an array of integers.

• We define a binary matrix  $M_S$  of dimension  $k' \times k$  collecting all the distinct rows (arranged in lexicographical order) that satisfy the following constraint: for every index *i*, the *i*-th row of  $M_S$  has all elements equal to zero except three entries in positions  $j_1$ ,  $j_2$  and  $j_3$  such that  $s_{j_1} + s_{j_2} + s_{j_3} > 0$ .

For instance, the matrix  $M_S$  of S = (5, 2, 2, -1, -4, -4) is

| 5٦ | 2 | 2 | -1 | -4 | -47 |  |
|----|---|---|----|----|-----|--|
| 1  | 1 | 1 | 0  | 0  | 0   |  |
| 1  | 1 | 0 | 1  | 0  | 0   |  |
| 1  | 1 | 0 | 0  | 1  | 0   |  |
| 1  | 1 | 0 | 0  | 0  | 1   |  |
| 1  | 0 | 1 | 1  | 0  | 0   |  |
| 1  | 0 | 1 | 0  | 1  | 0   |  |
| 1  | 0 | 1 | 0  | 0  | 1   |  |
| 0  | 1 | 1 | 1  | 0  | 0   |  |
| 7  | 5 | 5 | 3  | 2  | 2   |  |

# The matrix $M_S$

•  $M_S$  can be regarded as the incidence matrix of a (simple) 3-uniform hypergraph  $\mathcal{H}_S = (V, E)$  such that the element  $M_S(i, j) = 1$  if and only if the hyperedge  $e_i \in E$  contains the vertex  $v_j$ .

- *M<sub>S</sub>* can be regarded as the incidence matrix of a (simple)
   3-uniform hypergraph *H<sub>S</sub>* = (*V*, *E*) such that the element *M<sub>S</sub>*(*i*, *j*) = 1 if and only if the hyperedge *e<sub>i</sub>* ∈ *E* contains the vertex *v<sub>j</sub>*.
- Let  $\pi_S = (p_1, \dots, p_k)$  denote the degree sequence of  $\mathcal{H}_S$ . It holds  $\sum_{i=1}^{k'} M_S(i, j) = p_j$ .



## Problem 1

Determine the computational complexity of 3-Seq restricted to the class of the instances  $\pi_S$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Problems

### Problem 1

Determine the computational complexity of 3-Seq restricted to the class of the instances  $\pi_S$ .

## Problem 2

Characterize the 3-sequences whose related 3-uniform hypergraphs are unique up to isomorphism. Determine the computational complexity of 3-Seq restricted to that class of instances.

(日) (四) (日) (日) (日)

## Saind arrays

## Definition (Saind array)

For any  $n \ge 2$ , the **saind array** of size *n* is an integer array S(n) = (n, n-1, n-2, ..., 2-2n).

## Saind arrays

## Definition (Saind array)

For any  $n \ge 2$ , the **saind array** of size *n* is an integer array S(n) = (n, n-1, n-2, ..., 2-2n).

## Queue of $v_n$

■ 
$$n = 2 \rightarrow \pi(2) = (4, 3, 2, 2, 1)$$

## Queue of $v_n$

■ 
$$n = 2 \rightarrow \pi(2) = (4, 3, 2, 2, 1)$$

■ 
$$n = 3 \rightarrow \pi(3) = (12, 10, 8, 6, 5, 4, 2, 1)$$

## Queue of $v_n$

$$n = 2 \to \pi(2) = (4, 3, 2, 2, 1)$$
  

$$n = 3 \to \pi(3) = (12, 10, 8, 6, 5, 4, 2, 1)$$
  

$$n = 4 \to \pi(4) = (25, 21, 18, 15, 12, 10, 9, 6, 4, 2, 1)$$

1)

## Queue of $v_n$

$$n = 2 \rightarrow \pi(2) = (4, 3, 2, 2, 1)$$

$$n = 3 \rightarrow \pi(3) = (12, 10, 8, 6, 5, 4, 2, 1)$$

$$n = 4 \rightarrow \pi(4) = (25, 21, 18, 15, 12, 10, 9, 6, 4, 2, 1)$$

$$n = 5 \rightarrow$$

$$\pi(5) = (42, 37, 32, 28, 24, 20, 17, 15, 12, 9, 6, 4, 2, 1)$$

## Queue of $v_n$

$$n = 2 \rightarrow \pi(2) = (4, 3, 2, 2, 1)$$

$$n = 3 \rightarrow \pi(3) = (12, 10, 8, 6, 5, 4, 2, 1)$$

$$n = 4 \rightarrow \pi(4) = (25, 21, 18, 15, 12, 10, 9, 6, 4, 2, 1)$$

$$n = 5 \rightarrow$$

$$\pi(5) = (42, 37, 32, 28, 24, 20, 17, 15, 12, 9, 6, 4, 2, 1)$$

As n increases, the entries of Q(n) give rise to an infinite sequence: the Saind sequence (w<sub>n</sub>)<sub>n≥1</sub>.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Queue of $v_n$

$$n = 2 \rightarrow \pi(2) = (4, 3, 2, 2, 1)$$

$$n = 3 \rightarrow \pi(3) = (12, 10, 8, 6, 5, 4, 2, 1)$$

$$n = 4 \rightarrow \pi(4) = (25, 21, 18, 15, 12, 10, 9, 6, 4, 2, 1)$$

$$n = 5 \rightarrow$$

$$\pi(5) = (42, 37, 32, 28, 24, 20, 17, 15, 12, 9, 6, 4, 2, 1)$$

- As n increases, the entries of Q(n) give rise to an infinite sequence: the Saind sequence (w<sub>n</sub>)<sub>n≥1</sub>.
- The first few terms of *w<sub>n</sub>* are: 1,2,4,6,9,12,16,20,25,30,36,42,49,56,64,72,81,90,100...

## Queue triads



The queue-triads are: (1, 2, 6), (1, 3, 6), (1, 4, 6), (2, 3, 6)

## Queue triads

# Queue triads of size n and pointer k can be computed by the following algorithm:

 Algorithm 1 Algorithm that calculates queue-triads

 Input: n

 Output: All the queue-triads of size n

 Step 1: We determine the pointers:  $\begin{cases} k_o = 3 \cdot \frac{n+1}{2} & \text{if } n \text{ is odd} \\ k_e = \frac{3n+2}{2} + 1, k'_e = \frac{3n+2}{2} & \text{if } n \text{ is even} \end{cases}$ 

**Step 2:** We calculate the values of i for the pointers determined in Step 1:

$$\begin{array}{l} -n \text{ odd: } \left\{ \begin{array}{l} 1 \leq i \leq \frac{3 \cdot n - k}{2} & k_o \text{ odd} \\ 1 \leq i \leq \frac{3 \cdot n - k + 1}{2} & k_o \text{ even} \end{array} \right. \\ \\ -n \text{ even, and } k \in \{k_e, k'_e\} \text{: } \left\{ \begin{array}{l} 1 \leq i \leq \frac{3 \cdot n - k + 1}{2} & k \text{ odd} \\ 1 \leq i \leq \frac{3 \cdot n - k}{2} & k \text{ even} \end{array} \right. \\ \\ \mathbf{Step 3: We calculate } j: \ i + 1 \leq j \leq 3 \cdot n - k - (i - 2). \end{array} \right. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

# OEIS and A002620

#### 013627 THE ON-LINE ENCYCLOPEDIA 20 512 OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

a002620 (Greetings from The On-Line Encyclopedia of Integer Sequences!) Search Hinta

Search: a002620

| Displaying 1-10 of 366 res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ults found.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            | page 1 2 3 4 5 6 7 8 9 10 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sort: relevance   references   r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aumber I modified I created                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Format: long   short   data                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A002620 Quarter-sq<br>(Formerly M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uares: floor(n/2)*ceiling<br>0998 N0374)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g(n/2). Equivalently, floor(n^2                                                                                                            | 2/4). +40<br>366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0, 0, 1, 2, 4, 6, 9<br>132, 144, 156, 169,<br>420, 441, 462, 484,<br>graph: refs: listen: history: to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>12, 16, 20, 25, 3</li> <li>182, 196, 210, 225</li> <li>506, 529, 552, 576</li> <li>ext: internal format)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0, 36, 42, 49, 56, 64, 7<br>, 240, 256, 272, 289, 30<br>, 600, 625, 650, 676, 70                                                           | 2, 81, 90, 100, 110, 121,<br>16, 324, 342, 361, 380, 400,<br>12, 729, 756, 784, 812 (list:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ormer e,4<br>comments b,(n) +<br>eff<br>to ;<br>eff<br>to ;<br>eff | - A022526 (n $\cdot$ 2) - num<br>m (so critic for b(n))<br>cover and column permut<br>(s also the maximal)<br>b (n, n) (for n =<br>h (n, n $\cdot$ 1), - av<br>b (n, n $\cdot$ 1), - av<br>b extracted from t<br>n $\cdot$ 1), - <b>B</b> control<br>the extracted from t<br>n $\cdot$ 1, - <b>B</b> control<br>$\cdot$ 1, | Her of multigraphs with<br>La (2, 2, 3, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | loops on 2 modes with n<br>). Althomaker of 2-cover up<br>(i. Althomaker of 2-cover up<br>(i. Jun 08 2000 for<br>Urlangle-free graph of n<br>cover up to the state of the state of the state<br>(i. Jun 08 2000 for the state of the state of the state<br>(i. Jun 08 2000 for the state of the sta |

# Saind sequence and A002620

#### Theorem

For any 
$$m \ge 1$$
, we have  $w_m = \lfloor \frac{m+1}{2} \rfloor \cdot \lceil \frac{m+1}{2} \rceil$ .



## Definition (Integer partitions)

A partition of a positive integer *n* is a sequence of positive integers  $(\lambda_1, \lambda_2, ..., \lambda_m)$ , such that  $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$  and  $\lambda_1 + \lambda_2 + \cdots + \lambda_m = n$ .

A summand in a partition is called a part.

### Definition (Integer partitions)

A partition of a positive integer *n* is a sequence of positive integers  $(\lambda_1, \lambda_2, \ldots, \lambda_m)$ , such that  $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$  and  $\lambda_1 + \lambda_2 + \cdots + \lambda_m = n$ .

A summand in a partition is called a **part**. If P(i, k) is the number of integer partitions of *i* into *k* parts, and if k = 2, then

$$a(n) = \sum_{i=2}^{n} P(i,2)$$

where a(n) is the n - th number of the sequence A002620.

#### Proposition

For any  $n \ge 2$ , there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers  $2, 3, \ldots, k - 2$ .

#### Proposition

For any  $n \ge 2$ , there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers  $2, 3, \ldots, k - 2$ .

We define the function f as follows: given a queue triad t = (x, y, k), the corresponding integer partition f(t) = (g, p) is obtained by setting g = y - 1 and p = x.

#### Proposition

For any  $n \ge 2$ , there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers  $2, 3, \ldots, k - 2$ .

We define the function f as follows: given a queue triad t = (x, y, k), the corresponding integer partition f(t) = (g, p) is obtained by setting g = y - 1 and p = x.

#### Example: From queue-triads to integer partitions in 2 parts

 $(1,2,6) \rightarrow (1,1)$ Indeed:

$$g = 2 - 1 = 1$$

#### Proposition

For any  $n \ge 2$ , there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers  $2, 3, \ldots, k - 2$ .

We define the function f as follows: given a queue triad t = (x, y, k), the corresponding integer partition f(t) = (g, p) is obtained by setting g = y - 1 and p = x.

#### Example: From queue-triads to integer partitions in 2 parts

 $(1,3,6) \rightarrow (2,1)$ Indeed:

$$g = 3 - 1 = 2$$
  
 $p = 1$ 

#### Proposition

For any  $n \ge 2$ , there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers  $2, 3, \ldots, k - 2$ .

We define the function f as follows: given a queue triad t = (x, y, k), the corresponding integer partition f(t) = (g, p) is obtained by setting g = y - 1 and p = x.

#### Example: From queue-triads to integer partitions in 2 parts

 $(1,4,6) \rightarrow (3,1)$ Indeed:

$$g = 4 - 1 = 3$$
  
 $n = 1$ 

#### Proposition

For any  $n \ge 2$ , there is a bijection between the family of queue triads of size n and pointer k and the one of integer partitions in two parts of the integers  $2, 3, \ldots, k - 2$ .

We define the function f as follows: given a queue triad t = (x, y, k), the corresponding integer partition f(t) = (g, p) is obtained by setting g = y - 1 and p = x.

#### Example: From queue-triads to integer partitions in 2 parts

 $(2,3,6) \rightarrow (2,2)$ Indeed:

$$g = 3 - 1 = 2$$
  
 $p = 2$ 

## Definition (Dyck path)

A **Dyck path** of semi-length *n* is a path *P* of length 2n in the positive quarter plane that uses *UP* steps U = (1, 1) and *DOWN* steps D = (1, -1) starting at the origin and returning to the x-axis.

A particular subclass of Dyck paths is formed by Dyck paths of length 2n that are **symmetric**, which means that they are symmetrical with the respect to the axis of symmetry which passes through the upper end of the n - th step and it is parallel to the *y*-axis.



# Symmetric Dyck paths with 3 peaks and Queue triads

#### Proposition

For any n, the family of queue triads with size n and pointer k is in bijection with symmetric Dyck paths with exactly three peaks and semi-length  $\ell = (3n - 1) - k + 3$ .

#### Proposition

For any n, the family of queue triads with size n and pointer k is in bijection with symmetric Dyck paths with exactly three peaks and semi-length  $\ell = (3n - 1) - k + 3$ .



# Symmetric Dyck paths with 3 peaks and Queue triads

#### Proposition

For any n, the family of queue triads with size n and pointer k is in bijection with symmetric Dyck paths with exactly three peaks and semi-length  $\ell = (3n - 1) - k + 3$ .

### Example: From queue-triads to prefixes

For example, the queue triads of size 3 and pointer 6, i.e. (1,2,6), (1,3,6), (1,4,6), (2,3,6), are mapped onto the paths:



## Bijections in the case of 3-uniform hypergraphs



Study of sequences similar to Saind arrays, starting with a slightly different array and analyzing the combinatorial properties of the corresponding degree sequences.

| Array                                  | Number sequence | First terms                                |
|----------------------------------------|-----------------|--------------------------------------------|
| $(n, n, n-1, n-1, \ldots, 1-2n, 1-2n)$ | A035608         | $1, 5, 10, 18, 27, 39, 52, 68, 85, \ldots$ |
| $(n, n, n, \ldots, -n, -n, -n)$        | A079079         | $3, 6, 12, 24, 42, 63, 90, 120 \dots$      |



Giulia Palma giulia.palma@phd.unipi.it

イロト イロト イヨト イヨト 二日