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Hypergraphs

Definition (Hypergraph)

A hypergraph H is defined as a couple (V ,E ), where V is a finite
set of vertices v1, . . . , vn, and E ⇢ 2|V |

\; is a set of hyperedges,
i.e. a collection of subsets of V .

A hypergraph is simple if it has no loop and no equal hyperedges.
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The notion of degree sequence

Definition (Degree of a vertex)

Given an hypergraph H = (V ,E ), the degree of a vertex v 2 V

is the number of hyperedges that contain v .

A hypergraph is said to be k-uniform if each hyperedge has
cardinality k .

Definition (Degree sequence)

Given a hypergraph H = (V ,E ), the degree sequence of H is
(d1, d2, . . . , dn), where d1 � d2 � · · · � dn are the degrees of the
vertices.
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Starting problem

Starting Problem: k-Seq

Given ⇡ = (d1, d2, . . . , dn) a non decreasing sequence of positive
integers, can ⇡ be the degree sequence of a k�uniform simple
hypergraph?
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State of the art

1960 ! Erdös and Gallai effectively characterized degree
sequences for k = 2

1975 ! Dewdney proved a non effective condition for a
sequence to be k�graphic
2013 ! Behrens et al. proposed a sufficient condition for a
degree sequence to be k�graphic, but this result gives no
information about the associated k�uniform hypergraphs
2018 ! Deza et al. proved that for any fixed integer k � 3
the problem is NP�complete, so assuming P 6= NP it seems
also intractable to find a good characterization for ⇡ even for
the simplest case of 3�uniform hypegraphs.

New Goal
Assuming P 6= NP , find which instances are really NP�complete
and which, instead, are solvable in polynomial time.
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The matrix MS

Let S = (s1, . . . , sk) be an array of integers.
We define a binary matrix MS of dimension k

0
⇥ k collecting

all the distinct rows (arranged in lexicographical order) that
satisfy the following constraint: for every index i , the i-th row
of MS has all elements equal to zero except three entries in
positions j1, j2 and j3 such that sj1 + sj2 + sj3 > 0.

For instance, the matrix MS of S = (5, 2, 2,�1,�4,�4) is
2

66666666666664

5 2 2 �1 �4 �4
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
0 1 1 1 0 0
7 5 5 3 2 2

3

77777777777775
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The matrix MS

MS can be regarded as the incidence matrix of a (simple)
3-uniform hypergraph HS = (V ,E ) such that the element
MS(i , j) = 1 if and only if the hyperedge ei 2 E contains the
vertex vj .

Let ⇡S = (p1, . . . , pk) denote the degree sequence of HS . It
holds

Pk 0

i=1 MS(i , j) = pj .
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Problems

Problem 1
Determine the computational complexity of 3-Seq restricted to the
class of the instances ⇡S .

Problem 2
Characterize the 3-sequences whose related 3-uniform hypergraphs
are unique up to isomorphism. Determine the computational
complexity of 3-Seq restricted to that class of instances.
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Saind arrays

Definition (Saind array)

For any n � 2, the saind array of size n is an integer array
S(n) = (n, n � 1, n � 2, . . . , 2 � 2n).
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Queue and Saind sequence

Queue of vn

n = 2 ! ⇡(2) = (4, 3, 2, 2, 1)

n = 3 ! ⇡(3) = (12, 10, 8, 6, 5, 4, 2, 1)
n = 4 ! ⇡(4) = (25, 21, 18, 15, 12, 10, 9, 6, 4, 2, 1)
n = 5 !

⇡(5) = (42, 37, 32, 28, 24, 20, 17, 15, 12, 9, 6, 4, 2, 1)

As n increases, the entries of Q(n) give rise to an infinite
sequence: the Saind sequence (wn)n�1.
The first few terms of wn are:
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100 . . .
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Queue triads

The queue-triads are: (1, 2, 6), (1, 3, 6), (1, 4, 6), (2, 3, 6).
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Queue triads

Queue triads of size n and pointer k can be computed by the
following algorithm:
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OEIS and A002620
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Saind sequence and A002620

Theorem
For any m � 1, we have wm =

⌅
m+1

2
⇧
·
⌃
m+1

2
⌥
.
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Integer partitions

Definition (Integer partitions)

A partition of a positive integer n is a sequence of positive
integers (�1,�2, . . . ,�m), such that �1 � �2 � · · · � �m and
�1 + �2 + · · ·+ �m = n.

A summand in a partition is called a part.

If P(i , k) is the number of integer partitions of i into k parts, and if
k = 2, then

a(n) =
nX

i=2

P(i , 2)

where a(n) is the n � th number of the sequence A002620.
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Integer partitions and Queue triads

Proposition

For any n � 2, there is a bijection between the family of queue
triads of size n and pointer k and the one of integer partitions in
two parts of the integers 2, 3, . . . , k � 2.

We define the function f as follows: given a queue triad
t = (x , y , k), the corresponding integer partition f (t) = (g , p) is
obtained by setting g = y � 1 and p = x .

Example: From queue-triads to integer partitions in 2 parts

(1, 2, 6) ! (1, 1)
Indeed:

g = 2 � 1 = 1

p = 1
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Integer partitions and Queue triads

Proposition

For any n � 2, there is a bijection between the family of queue
triads of size n and pointer k and the one of integer partitions in
two parts of the integers 2, 3, . . . , k � 2.

We define the function f as follows: given a queue triad
t = (x , y , k), the corresponding integer partition f (t) = (g , p) is
obtained by setting g = y � 1 and p = x .
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g = 4 � 1 = 3

p = 1
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Integer partitions and Queue triads

Proposition

For any n � 2, there is a bijection between the family of queue
triads of size n and pointer k and the one of integer partitions in
two parts of the integers 2, 3, . . . , k � 2.

We define the function f as follows: given a queue triad
t = (x , y , k), the corresponding integer partition f (t) = (g , p) is
obtained by setting g = y � 1 and p = x .

Example: From queue-triads to integer partitions in 2 parts

(2, 3, 6) ! (2, 2)
Indeed:

g = 3 � 1 = 2

p = 2
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Symmetric Dyck paths with 3 peaks

Definition (Dyck path)

A Dyck path of semi-length n is a path P of length 2n in the
positive quarter plane that uses UP steps U = (1, 1) and DOWN

steps D = (1,�1) starting at the origin and returning to the x-axis.

A particular subclass of Dyck paths is formed by Dyck paths of
length 2n that are symmetric, which means that they are
symmetrical with the respect to the axis of symmetry which passes
through the upper end of the n � th step and it is parallel to the
y -axis.
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Symmetric Dyck paths with 3 peaks and Queue triads

Proposition

For any n, the family of queue triads with size n and pointer k is in
bijection with symmetric Dyck paths with exactly three peaks and
semi-length ` = (3n � 1)� k + 3.
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Symmetric Dyck paths with 3 peaks and Queue triads

Proposition

For any n, the family of queue triads with size n and pointer k is in
bijection with symmetric Dyck paths with exactly three peaks and
semi-length ` = (3n � 1)� k + 3.

Example: From queue-triads to prefixes

For example, the queue triads of size 3 and pointer 6, i.e. (1, 2, 6),
(1, 3, 6), (1, 4, 6), (2, 3, 6), are mapped onto the paths:

(1,2,6) (2,3,6)(1,4,6)(1,3,6)
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Bijections in the case of 3�uniform hypergraphs
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Future developments

Study of sequences similar to Saind arrays, starting with a slightly
different array and analyzing the combinatorial properties of the
corresponding degree sequences.

Array Number sequence First terms
(n, n, n � 1, n � 1, . . . , 1 � 2n, 1 � 2n) A035608 1, 5, 10, 18, 27, 39, 52, 68, 85, . . .

(n, n, n, . . . ,�n,�n,�n) A079079 3, 6, 12, 24, 42, 63, 90, 120 . . .

25 / 26



Giulia Palma
giulia.palma@phd.unipi.it

26

26 / 26


	Main notions and State of the art
	Our findings: degree sequences of 3-uniform hypergraphs arising from saind sequences
	Conclusions and future developments

