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Computational Fabrication

Computational Fabrication
Is a field that attempts to
aid digital manufacturing
by developing
computational tools

geometry
processing

computational
fabrication

shape analysis

optimization
methods

physical
simulation




Achieving desired mechanical
properties

1. Introduction

[Lu et al. 2014] [Bickel et al. 2010]




Metamaterials
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Goal

1. Introduction

"Computational design of flat ornamental patterns
which, when tiled in a prescribed way, approximate
a desired 3D shape"
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Shape approximations using flat pieces

2. State of the art
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[Guseinov et al. 2017]
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Shape approximations using flat pieces

2. State of the art
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[Guseinov et al. 2017]
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intermediate state

Bending-active structures

planar assembly state (top view)

intermediate state (side view)

beam profile

final deployed state

[Panetta et al. 2019]
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Shape approximations using spiral patterns

[Malomo & Perez et al. 2018]

[Laccone et al. 2020]
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3.

Computational design of flat
patterns for approximating 3D

shapes
a.

Simulation model

Motivation

Simulation tools are essential for assesing
accuracy and for determing feasibility of
deformations

Commercial FEM packages are both
computationally demanding & not open

Scarcity of lightweight and open simulation tools

Computational Design of Metamaterials: From Geometry to Mechanical Properties 20



Sakal et al. 2020 - Non-linear beam
simulation model

Sakai et al. 2020 : “A computational tool for the analysis of
3D bending-active structures based on the dynamic
relaxation method”

3. Computational design of flat

p:ttemsforapproximating3D Problem: Computation of the static equilibrium state of
shapes
a.  Simulation model structures

Computational Design of Metamaterials: From Geometry to Mechanical Properties 22



Sakai et al. 2020 - Element frame
formulation

3. Computational design of flat
patterns for approximating 3D

shapes
a. Simulation model

Formulation of the
element frame with
respect to the normal of
the nodes
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Sakal et al. 2020 - The dynamic
relaxation method

Input: Discretized structure, Loads, Boundary conditions
Result: Structure in static equilibrium

3. Computational design of flat Initialize();
s;;;e;;‘s for approximating 3D while Structure is not in static equilibrium do
a.  Simulation model UpdateResidualForces();
UpdateCoordinates();
t =1+ At:

if Local maxima of kinetic energy reached then
‘ DampKineticEnergy();
end

end

SIpviy
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Sakal et al. 2020 — Visual results
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Input: Discretized structure, Loads, Boundary conditions
Result: Structure in static equilibrium
Initialize();

while Structure is not in static equilibrium do
UpdateResidualForces();
UpdateCoordinates();
t=t+ At;
if Local maxima of kinetic energy reached then
‘ DampKineticEnergy();
end

end
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Topological exploration of flat
patterns

* Goal: Tessellating a surface with a range of patternsin a
consistent way
* For doing that we compute a voronoi tesselation

3. Computational design of flat
patterns for approximating 3D
shapes

b. Topology exploration of
flat patterns
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3.

Computational design of flat
patterns for approximating 3D
shapes

b. Topology exploration of
flat patterns

Topological exploration of flat

patterns

Due to the symmetry of the tesselation, we can generate
pattern topologies by studying graphs on a base triangle
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Pattern example

Introduction
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Valid edges

We begin by creating a valid set of edges

We do not allow edges that intersect with each other

We do not allow edges that due the rotational symmetry of
the tessellation are the same

31



3.

Computational design of flat
patterns for approximating 3D
shapes

b. Topology exploration of
flat patterns

Valid topologies

We enforce the fabricability of the topologies by making sure

they meet the following criteria:

* Single connected component

 No Dangling edges

* No Articulation points
All patterns that meet these criteria form the subset of valid
topologies
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Multiple connected components
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Dangling edges
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Articulation points
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3.

Computational design of flat
patterns for approximating 3D

shapes

C.

Optimization Framework

Optimization Framework

A framework that can optimize the geometry of the patterns for
minimizing the approximation error

A straightforward approach: Running an optimization method
on the full structure. But that would be computationally
infeasible

Currently exploring: Constructing a reduced model
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3.

Computational design of flat
patterns for approximating 3D

shapes

C.

Optimization Framework

Optimization Framework

Constructing a reduced model for our patterns
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4,

Future directions

Future directions

Creating families of patterns with identical stiffness, but
different macro-mechanical properties such as rigidity,
weight etc.

Multiple external loads, rain actuated shapes

Simulation tool & pattern topology exploration can benefit
future computationally assisted smart design tools
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Summary

Digital fabrication lacks automatic tools that
encapsulate field-specific knowledge

We proposed a plan for computationally designing flat
structures which when tilled approximate a desired 3D
shape

Future extensions of our work



Thank you for your attention!



