Techniques for query verification

A brief overview

Matteo Loporchio

University of Pisa

January 22nd, 2021

1/32

Data outsourcing [LT18]

» The advent of cloud computing has opened new possibilities
in terms of hardware and software resource distribution.

» Companies frequently delegate the storage and management
of a data collection (e.g. a database) to a cloud provider.

» Providers have all the necessary infrastructures to make these
data available to the public.

» This practice is commonly known as data outsourcing.

» Huge saving on maintenance costs, but we also face some
security problems.

2/32

Data outsourcing [LT18]

Service provider

Outsourced data flow Query results

Query on S
gooopooooooao l ‘
gooag oooag = - ——
000010000 Authorization information flow E’
Data owner User

3/32

Authenticated query processing

» Providers can return tampered or incomplete results.
» The correctness of the results is ensured if and only if:
1. Authenticity. Results are returned without any modification.
2. Completeness. All objects satisfying the query are returned.
» Idea: Force providers to send results + cryptographic proof
(called verification object).

v

Efficient retrieval, proof construction and verification.

v

Proofs must be as succinct as possible, too!

4/32

Data model

» The collection S = {51,...,5n} is a set of m sets.
» Forie{l,...,m}itis S; C Zp, with p prime.
» Given two indices i,j € {1,...,m}:

1. Subset. Check whether S; C S;.
2. Empty intersection. Check whether ;N S; = 0.

» The provider must be able to generate subset and
disjointness proofs for the client.

5/32

Example

> Let p=11and S = {X1, Xz, X3, X4 }.
» Suppose that:

X, = {1,3,7,9} X, = {1,2,8,9,10}
X; = {1,2,4,5,7,9} X = {2,8,9}

> Input: i =4, j=2,ie is X4 C X7
» Result: True + a proof that X4 C X,.

6/32

Background

A group is a set G paired with an operation * such that:
1. Closure. For any a,be G itisaxb e G.
2. Associativity. Forany a,b,c € Gitis (a*b)xc =ax(bxc).
3. Identity. There exists 1 € G s.t. 1 xa=ax1 = a for any

aeG.
4. Inverse. For any a € G, there exists a~! s.t.
axa l=alxa=1.

7/32

Background

» The order of G is the number of its elements.
» If *x is multiplication, G is called multiplicative.

> A generator g € G is an element such that
VxeG dneN st. x=g"

» A cyclic group has at least one generator.

A\

If pis prime, then Z7 = {1,...,p — 1} is cyclic.

8/32

Example

n 1 2 3 4 5 6 7 8 9 10
2" modl1ll 2 4 8 5 10 9 7 3 6 1
3" mod1l 3 9 5 4 1 3 9 5 4 1
6" mod1ll 6 3 7 9 10 5 8 4 2 1

Table: 2 and 6 are generators for Zj;, 3 is not.

9/32

Bilinear pairings

> Let G and G 1 be two cyclic groups of the same order p.

> Let g be a generator of G.
» A (symmetric) bilinear pairing is a function e : G x G — G
such that:
1. Bilinearity. For any u,v € G and any a,b € Z it is
e(u?,vP) = e(u, v)?.
2. Non degeneracy. e(g,g) # 1.
3. Computability. For any u, v € G, computing e(u, v) is

efficient.

10/32

Elliptic curves

» The group G is typically an elliptic curve.
» Defined as a “cloud” of points in Z%. For p > 3:

Ep(a,b) ={(x,y) € Zi |y*’=x3+ax+b modp}U{O}

» The group operation in £,(a, b) is addition between points.

» Not the usual “component-wise” addition!

(Xuy)/u) + (Xw)/v) # (Xu + Xv, Yu +)/v)

» With multiplicative notation, for any v € G and n € N:
n

u" is equivalentto u+...4+u
—_———

n times

11/32

Elliptic curves

36 paints (Infinity not shawn) P ¥'2 = X" + 1%+ 0 mod 37

ENNNERRNENELRERES
L

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

12/32

Set accumulators

v

Let p be a prime number.
Let G a cyclic group of order p and g € G a generator.

Accumulator: a function acc that maps a set to an element
of G.
acc : P(Zp) = G

Given a set X, we call acc(X) the accumulative value.

Collision-resistance: given a set X, it is difficult to find
Y # X such that acc(Y) = acc(X).

13/32

Characteristic polynomial

» Given a set X C Z,, we call

Px(z) = [J(x+2)

xeX

the characteristic polynomial of X, with coefficients in Zj,.
» For any X it is deg Px(z) = | X].

» Given X = {x1,...,%n}, the coefficients ay, ..., a, of

PX(Z):HXI+Z Zal

can be computed in O(nlog n) time, as proved in [PS77].

14/32

Bilinear accumulator

» Bilinear accumulator:
acc(X) = g

where s € Z, is a random secret (trapdoor).
» Collision-resistant, as proved in [PTT15].

» We can still compute acc(X) without knowing s if
(g.85.8%,...,8%") is public, with g > |X]|.

15/32

Example

> Let p=11, g=2,s=3and X ={4,7} C Z1;.
Px(z) = (z +4)(z +7) = z> + 6.

The accumulative value is:

vy

acc(X) = gMx(8) = 046 =215 = 10 mod 11

Suppose that (g,gs,g52) =(2,8,6) mod 11 is public.

vy

We can still compute acc(X) as:

acc(X)Eg52+6Eg52-g6E6-2656-9510 mod 11

16 /32

Security

» The security of accumulators hinges on the difficulty of solving
a specific cryptographic problem.

» Discrete logarithm: if we know g and k = g° it is difficult to
obtain s = log, k.

» g-Strong Bilinear Diffie-Hellman problem: given a tuple
(g,gs,gsz, ...,&%") as input, output the pair

(e(g. &)Y ™), x)

with x € Zp.

17/32

Security

» g-SBDH assumption: for any PPT (probabilistic
polynomial-time) algorithm A it is:

PlA(g. g% e%,....2%) = (e(g,8)V),x)] < e

where € is a negligible quantity.
P> As long as s is secret, a PPT algorithm cannot derive the

output pair of the g-SBDH problem (except with a negligible
probability).

18/32

Authentication protocols

v

vV vyVYyy

Our goal is to design protocols to authenticate subset and
intersection operations.

Protocols define the interaction between provider and client.
The group G, the pairing e and the prime p are public.
The owner chooses s € Z, at random and keeps it secret.

The owner publishes pk = (g,gs,gs2, e agsq)-

19/32

Subset operation [PTT11]

Let X and Y be two sets.
1. The provider computes m = acc(Y \ X).
2. The provider sends 7, acc(X), and acc(Y) to the client.
3. The client checks if

e(acc(X),) z e(acc(Y),g)

4. If this is the case, then the proof is valid and the client can be
sure that X C Y.

20/32

Subset operation [PTT11]

» Why is this protocol correct?
» Recall that acc(X) = gPX(S) and acc(Y) = gPY(S).
» Suppose that m = acc(Y \ X) = gPY\X(S)_
» Then it is:
e(acc(X),m) = e(gPX(S)ngY\x(S)) = e(gjg)PX(s)'PY\X(s)
> And also:

e(acc(Y), g) = (™), g) = e(g,8)")
» Then e(g,g)PX(s)'PY\X(S) = e(g, g)") if and only if:

Px(s) - Py\x(s) = Py(s)

21/32

Example

> Let p=11 and pk = (g, 8%, 85,85) = (2,8,6,7) mod 11.
> Let X = {4} and Y = {1,4,5}.
» We have that:

acc(X) = gMx(s) = go+4 =7 mod 11

acc(Y) = ghr(s) = go 110547549 =7 mod 11

» The provider computes Y \ X = {1,5} and
Py\x(z) = 22 + 6z + 5.

22/32

Example

» Then it sends
m=acc(Y\X)=g"t05t5=6.89.2°=4 mod 11

and the values acc(X) = acc(Y) =7 to the client.
» The client checks if the following equality holds:

e(acc(X),m) = e(7,4) < e(7,2) = e(acc(Y), g)

23/32

Empty intersection

Let X and Y be two sets. We can prove the following results:
> If XNY = then GCD(Px, Py) = 1.
> Pxny(z) = GCD(Px, Py).
> If XN'Y = () then there exist U(z) and V/(z) such that:

U(z)Px(z) + V(2)Py(z) =1

» U(z) and V/(z) can always be obtained by means of the
Extended Euclidean Algorithm.

24/32

Empty intersection

Let X and Y be two disjoint sets.
1. The provider computes m = gU(®) and m = gV(¢) by
exploiting the fact that:
U(S) . Px(S) + V(S) . Py(S) =1

2. The provider sends 71, m, acc(X) and acc(Y) to the client.
3. The client checks if this condition holds:
?

e(m1, acc(X)) - e(ma, acc(Y)) = e(g, g)

4. If this is the case, then the proof is valid and the client can be
sure that XN'Y = 0.

25/32

Example

> Suppose that p = 11, pk = (g,£°,8%,8%) = (2,8,6,7)
mod 11, X = {1,3,4}, Y = {2,5,7}.

» The provider computes Px(z) = z3 + 822 + 8z 41 and
Py(z) = z3 + 32z% 4+ 4z + 4 and the accumulative values:

acc(X) = gPx(s) = g 484841l =5 10d 11

acc(Y) = gPr(d) = g¥ 13454 = 1 mod 11
» Given that X and Y are disjoint, it is:

(92% 4+ z + 4) -Px(z) + (22° + 9z + 2) -Py(2) = 1
(2) V(z)
U(z z

26/32

Example

» The provider then computes:

T = gU(s) =g g52)9 g5 gt =3 mod 11

=gVl = g252+95+2 = (g52)2 (g°)°-g%> =7 mod 11

9s24s+4 = (

and sends 71, w2, acc(X), acc(Y) to the client.

» The client verifies the proofs by checking if:

?

e(m1, acc(X)) - e(ma, acc(Y)) = e(3,5) - e(7,1) = e(2,2)

» Computing e(u, v) is efficient for any u, v € G, so the
verification phase is easy.

27/32

Unforgeability

» Set accumulators are considered secure if they are
unforgeable.

» This means that a polynomial-time adversary A has a
negligible success probability of forging fake proofs.
> Consider the following experiment:

1. Give pk = (g,gs,g52 .8) to A
2. A outputs two sets X, Y with a disjointness proof (1, m2).

» We say that A succeeds if and only if X N'Y # () and the
client declares (71,) as valid.

» The bilinear accumulator is unforgeable, as proved in [PTT11].

28/32

Conclusions

» Set accumulators can be used to generate constant-size proofs
for queries on outsourced data collections.

» More “expressive” than Merkle Hash Trees (allow subset and
disjointness proofs).

> Different protocols and accumulators for other set operations
and more complex queries also exist.

> Recently used in the context of blockchain systems. [XZX19]
» Some important downsides:

» Computational overhead (operations on elliptic curves).
» Public key size is O(q), with g = maxs,es |S;|.

29/32

The end

Thank you for your attention.

30/32

References |

[LT18] Ling Liu, M. Tamer Ozsu, “Encyclopedia of Database
Systems, Second Edition” Springer-Verlag, New York, 2018.

[PST7] Franco P. Preparata, Dilip V. Sarwate. “Computational
complexity of Fourier transforms over finite fields”, Mathematics
of Computation, vol. 31, n. 139, pp. 740-751, 1977.

[PTT11] Charalampos Papamanthou, Roberto Tamassia, Nikos
Triandopoulos, “Optimal Verification of Operations on Dynamic
Sets”, Advances in Cryptology — CRYPTO 2011, Lecture Notes
in Computer Science, vol. 6841, Springer, Berlin, Heidelberg,
2011.

[PTT15] Charalampos Papamanthou, Roberto Tamassia, Nikos
Triandopoulos, “Authenticated hash tables based on
cryptographic accumulators”, Algorithmica, vol. 74, n. 2, pp.
664-712, 2015.

31/32

References |l

[Tam03] Roberto Tamassia, “Authenticated Data Structures”,
Algorithms - ESA 2003, Lecture Notes in Computer Science,
vol. 2832, Springer, Berlin, Heidelberg, 2003.

[XZX19] Cheng Xu, Ce Zhang, Jianliang Xu, “vChain: Enabling
Verifiable Boolean Range Queries over Blockchain Databases”,
ACM SIGMOD, 2019.

32/32

