
Techniques for query verification
A brief overview

Matteo Loporchio

University of Pisa

January 22nd, 2021

1 / 32

Data outsourcing [LT18]

I The advent of cloud computing has opened new possibilities
in terms of hardware and software resource distribution.

I Companies frequently delegate the storage and management
of a data collection (e.g. a database) to a cloud provider.

I Providers have all the necessary infrastructures to make these
data available to the public.

I This practice is commonly known as data outsourcing.

I Huge saving on maintenance costs, but we also face some
security problems.

2 / 32

Data outsourcing [LT18]

Service provider
S = {s1, . . . , sn}

Data owner User

Authorization information flow

Outsourced data flow Query results

Query on S

3 / 32

Authenticated query processing

I Providers can return tampered or incomplete results.
I The correctness of the results is ensured if and only if:

1. Authenticity. Results are returned without any modification.
2. Completeness. All objects satisfying the query are returned.

I Idea: Force providers to send results + cryptographic proof
(called verification object).

I Efficient retrieval, proof construction and verification.

I Proofs must be as succinct as possible, too!

4 / 32

Data model

I The collection S = {S1, . . . ,Sm} is a set of m sets.

I For i ∈ {1, . . . ,m} it is Si ⊆ Zp, with p prime.
I Given two indices i , j ∈ {1, . . . ,m}:

1. Subset. Check whether Si ⊆ Sj .
2. Empty intersection. Check whether Si ∩ Sj = ∅.

I The provider must be able to generate subset and
disjointness proofs for the client.

5 / 32

Example

I Let p = 11 and S = {X1,X2,X3,X4}.
I Suppose that:

X1 = {1, 3, 7, 9} X2 = {1, 2, 8, 9, 10}
X3 = {1, 2, 4, 5, 7, 9} X4 = {2, 8, 9}

I Input: i = 4, j = 2, i.e. is X4 ⊆ X2?

I Result: True + a proof that X4 ⊆ X2.

6 / 32

Background

A group is a set G paired with an operation ∗ such that:

1. Closure. For any a, b ∈ G it is a ∗ b ∈ G.

2. Associativity. For any a, b, c ∈ G it is (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Identity. There exists 1 ∈ G s.t. 1 ∗ a = a ∗ 1 = a for any
a ∈ G.

4. Inverse. For any a ∈ G, there exists a−1 s.t.
a ∗ a−1 = a−1 ∗ a = 1.

7 / 32

Background

I The order of G is the number of its elements.

I If ∗ is multiplication, G is called multiplicative.

I A generator g ∈ G is an element such that

∀x ∈ G ∃n ∈ N s.t. x = gn

I A cyclic group has at least one generator.

I If p is prime, then Z∗p = {1, . . . , p − 1} is cyclic.

8 / 32

Example

n 1 2 3 4 5 6 7 8 9 10

2n mod 11 2 4 8 5 10 9 7 3 6 1
3n mod 11 3 9 5 4 1 3 9 5 4 1
6n mod 11 6 3 7 9 10 5 8 4 2 1

Table: 2 and 6 are generators for Z∗11, 3 is not.

9 / 32

Bilinear pairings

I Let G and GT be two cyclic groups of the same order p.

I Let g be a generator of G.
I A (symmetric) bilinear pairing is a function e : G×G→ GT

such that:

1. Bilinearity. For any u, v ∈ G and any a, b ∈ Z it is
e(ua, vb) = e(u, v)ab.

2. Non degeneracy. e(g , g) 6= 1.
3. Computability. For any u, v ∈ G, computing e(u, v) is

efficient.

10 / 32

Elliptic curves

I The group G is typically an elliptic curve.

I Defined as a “cloud” of points in Z2
p. For p > 3:

Ep(a, b) = {(x , y) ∈ Z2
p | y2 ≡ x3 + ax + b mod p} ∪ {O}

I The group operation in Ep(a, b) is addition between points.

I Not the usual “component-wise” addition!

(xu, yu) + (xv , yv) 6= (xu + xv , yu + yv)

I With multiplicative notation, for any u ∈ G and n ∈ N:

un is equivalent to u + . . .+ u︸ ︷︷ ︸
n times

11 / 32

Elliptic curves

12 / 32

Set accumulators

I Let p be a prime number.

I Let G a cyclic group of order p and g ∈ G a generator.

I Accumulator: a function acc that maps a set to an element
of G.

acc : P(Zp)→ G

I Given a set X , we call acc(X) the accumulative value.

I Collision-resistance: given a set X , it is difficult to find
Y 6= X such that acc(Y) = acc(X).

13 / 32

Characteristic polynomial

I Given a set X ⊆ Zp, we call

PX (z) =
∏
x∈X

(x + z)

the characteristic polynomial of X , with coefficients in Zp.

I For any X it is degPX (z) = |X |.
I Given X = {x1, . . . , xn}, the coefficients a1, . . . , an of

PX (z) =
n∏

i=1

(xi + z) =
n∑

i=0

aiz
i

can be computed in O(n log n) time, as proved in [PS77].

14 / 32

Bilinear accumulator

I Bilinear accumulator:

acc(X) = gPX (s)

where s ∈ Zp is a random secret (trapdoor).

I Collision-resistant, as proved in [PTT15].

I We can still compute acc(X) without knowing s if
(g , g s , g s2 , . . . , g sq) is public, with q ≥ |X |.

15 / 32

Example

I Let p = 11, g = 2, s = 3 and X = {4, 7} ⊆ Z11.

I PX (z) = (z + 4)(z + 7) = z2 + 6.

I The accumulative value is:

acc(X) ≡ gPX (s) ≡ 23
2+6 ≡ 215 ≡ 10 mod 11

I Suppose that (g , g s , g s2) ≡ (2, 8, 6) mod 11 is public.

I We can still compute acc(X) as:

acc(X) ≡ g s2+6 ≡ g s2 · g6 ≡ 6 · 26 ≡ 6 · 9 ≡ 10 mod 11

16 / 32

Security

I The security of accumulators hinges on the difficulty of solving
a specific cryptographic problem.

I Discrete logarithm: if we know g and k = g s it is difficult to
obtain s = logg k .

I q-Strong Bilinear Diffie-Hellman problem: given a tuple
(g , g s , g s2 , . . . , g sq) as input, output the pair

(e(g , g)1/(s+x), x)

with x ∈ Zp.

17 / 32

Security

I q-SBDH assumption: for any PPT (probabilistic
polynomial-time) algorithm A it is:

P[A(g , g s , g s2 , . . . , g sq) = (e(g , g)1/(s+x), x)] ≤ ε

where ε is a negligible quantity.

I As long as s is secret, a PPT algorithm cannot derive the
output pair of the q-SBDH problem (except with a negligible
probability).

18 / 32

Authentication protocols

I Our goal is to design protocols to authenticate subset and
intersection operations.

I Protocols define the interaction between provider and client.

I The group G, the pairing e and the prime p are public.

I The owner chooses s ∈ Zp at random and keeps it secret.

I The owner publishes pk = (g , g s , g s2 , . . . , g sq).

19 / 32

Subset operation [PTT11]

Let X and Y be two sets.

1. The provider computes π = acc(Y \ X).

2. The provider sends π, acc(X), and acc(Y) to the client.

3. The client checks if

e(acc(X), π)
?
= e(acc(Y), g)

4. If this is the case, then the proof is valid and the client can be
sure that X ⊆ Y .

20 / 32

Subset operation [PTT11]

I Why is this protocol correct?

I Recall that acc(X) = gPX (s) and acc(Y) = gPY (s).

I Suppose that π = acc(Y \ X) = gPY\X (s).

I Then it is:

e(acc(X), π) = e(gPX (s), gPY\X (s)) = e(g , g)PX (s)·PY\X (s)

I And also:

e(acc(Y), g) = e(gPY (s), g) = e(g , g)PY (s)

I Then e(g , g)PX (s)·PY\X (s) = e(g , g)PY (s) if and only if:

PX (s) · PY \X (s) = PY (s)

21 / 32

Example

I Let p = 11 and pk ≡ (g , g s , g s2 , g s3) ≡ (2, 8, 6, 7) mod 11.

I Let X = {4} and Y = {1, 4, 5}.
I We have that:

acc(X) ≡ gPX (s) ≡ g s+4 ≡ 7 mod 11

acc(Y) ≡ gPY (s) ≡ g s3+10s2+7s+9 ≡ 7 mod 11

I The provider computes Y \ X = {1, 5} and
PY \X (z) = z2 + 6z + 5.

22 / 32

Example

I Then it sends

π = acc(Y \ X) ≡ g s2+6s+5 ≡ 6 · 86 · 25 ≡ 4 mod 11

and the values acc(X) = acc(Y) = 7 to the client.

I The client checks if the following equality holds:

e(acc(X), π) = e(7, 4)
?
= e(7, 2) = e(acc(Y), g)

23 / 32

Empty intersection

Let X and Y be two sets. We can prove the following results:

I If X ∩ Y = ∅ then GCD(PX ,PY) = 1.

I PX∩Y (z) = GCD(PX ,PY).

I If X ∩ Y = ∅ then there exist U(z) and V (z) such that:

U(z)PX (z) + V (z)PY (z) = 1

I U(z) and V (z) can always be obtained by means of the
Extended Euclidean Algorithm.

24 / 32

Empty intersection

Let X and Y be two disjoint sets.

1. The provider computes π1 = gU(s) and π2 = gV (s) by
exploiting the fact that:

U(s) · PX (s) + V (s) · PY (s) = 1

2. The provider sends π1, π2, acc(X) and acc(Y) to the client.

3. The client checks if this condition holds:

e(π1, acc(X)) · e(π2, acc(Y))
?
= e(g , g)

4. If this is the case, then the proof is valid and the client can be
sure that X ∩ Y = ∅.

25 / 32

Example

I Suppose that p = 11, pk ≡ (g , g s , g s2 , g s3) ≡ (2, 8, 6, 7)
mod 11, X = {1, 3, 4}, Y = {2, 5, 7}.

I The provider computes PX (z) = z3 + 8z2 + 8z + 1 and
PY (z) = z3 + 3z2 + 4z + 4 and the accumulative values:

acc(X) ≡ gPX (s) ≡ g s3+8s2+8s+1 ≡ 5 mod 11

acc(Y) ≡ gPY (s) ≡ g s3+3s2+4s+4 ≡ 1 mod 11

I Given that X and Y are disjoint, it is:

(9z2 + z + 4)︸ ︷︷ ︸
U(z)

·PX (z) + (2z2 + 9z + 2)︸ ︷︷ ︸
V (z)

·PY (z) = 1

26 / 32

Example

I The provider then computes:

π1 ≡ gU(s) ≡ g9s2+s+4 ≡ (g s2)9 · g s · g4 ≡ 3 mod 11

π2 ≡ gV (s) ≡ g2s2+9s+2 ≡ (g s2)2 · (g s)9 · g2 ≡ 7 mod 11

and sends π1, π2, acc(X), acc(Y) to the client.

I The client verifies the proofs by checking if:

e(π1, acc(X)) · e(π2, acc(Y)) = e(3, 5) · e(7, 1)
?
= e(2, 2)

I Computing e(u, v) is efficient for any u, v ∈ G, so the
verification phase is easy.

27 / 32

Unforgeability

I Set accumulators are considered secure if they are
unforgeable.

I This means that a polynomial-time adversary A has a
negligible success probability of forging fake proofs.

I Consider the following experiment:

1. Give pk = (g , g s , g s2 . . . , g sq) to A.
2. A outputs two sets X ,Y with a disjointness proof (π1, π2).

I We say that A succeeds if and only if X ∩ Y 6= ∅ and the
client declares (π1, π2) as valid.

I The bilinear accumulator is unforgeable, as proved in [PTT11].

28 / 32

Conclusions

I Set accumulators can be used to generate constant-size proofs
for queries on outsourced data collections.

I More “expressive” than Merkle Hash Trees (allow subset and
disjointness proofs).

I Different protocols and accumulators for other set operations
and more complex queries also exist.

I Recently used in the context of blockchain systems. [XZX19]
I Some important downsides:

I Computational overhead (operations on elliptic curves).
I Public key size is O(q), with q = maxSi∈S |Si |.

29 / 32

The end

Thank you for your attention.

30 / 32

References I

[LT18] Ling Liu, M. Tamer Özsu, “Encyclopedia of Database
Systems, Second Edition” Springer-Verlag, New York, 2018.

[PS77] Franco P. Preparata, Dilip V. Sarwate. “Computational
complexity of Fourier transforms over finite fields”, Mathematics
of Computation, vol. 31, n. 139, pp. 740-751, 1977.

[PTT11] Charalampos Papamanthou, Roberto Tamassia, Nikos
Triandopoulos, “Optimal Verification of Operations on Dynamic
Sets”, Advances in Cryptology – CRYPTO 2011, Lecture Notes
in Computer Science, vol. 6841, Springer, Berlin, Heidelberg,
2011.

[PTT15] Charalampos Papamanthou, Roberto Tamassia, Nikos
Triandopoulos, “Authenticated hash tables based on
cryptographic accumulators”, Algorithmica, vol. 74, n. 2, pp.
664-712, 2015.

31 / 32

References II

[Tam03] Roberto Tamassia, “Authenticated Data Structures”,
Algorithms - ESA 2003, Lecture Notes in Computer Science,
vol. 2832, Springer, Berlin, Heidelberg, 2003.

[XZX19] Cheng Xu, Ce Zhang, Jianliang Xu, “vChain: Enabling
Verifiable Boolean Range Queries over Blockchain Databases”,
ACM SIGMOD, 2019.

32 / 32

