

A mechanistic approach for modelling spatial, temporal and social aspects of human mobility

Author: Giuliano Cornacchia

09-04-2021

 Human mobility is the discipline that studies the movements of individuals in space and time.

 The increase of GPS devices and locationbased services allows to collect digital footprints of human's movements.

- The large avaliability of digital traces of our displacements, offers the possibility to study human movements at a large scale and in detail.
- Several mobility patterns emerge [1, 2]:
 - **Power-law** behavior of Δr , r_g , and Δt
 - Tendency to return to few location visited before
 - Move at specific times of the day

Brockmann, D., Hufnagel, L., Geisel, T., 2006. The scaling laws of human travel. Nature 439, 462–5.
 Gonzalez, M.C., Hidalgo, C., Barabasi, A.L., 2008. Understanding individual human mobility patterns. Nature 453, 779–82.

• Mobility trajectory data are of **fundamental** importance in different disciplines [3]:

Epidemic modeling

Traffic optimization

What-if analysis

Problem

 Mobility trajectory data are sensitive: they suffer from privacy attacks [4]

 Companies cannot make mobility data freely available

Solution

- Generative models
 - Generate synthetic yet realistic trajectories
 - Reduce the cost of the data collection phase (time and money)
 - Produce trajectories for new scenarios

[4] Montjoye, Y.A., Hidalgo, C., Verleysen, M., Blondel, V., 2013. Unique in the crowd: The privacy bounds of human mobility. Scientific reports 3, 1376.

- A mechanistic model assumes that a complex system can be understood by examining the workings of its individual parts and the way they are coupled.
- They use pre-calculated statistical functions based on prior knowledge of human mobility.

PROS

- + Explainability
- + Transferability

CONS

 Cannot capture all the aspects of mobility

- Most of the generative models focus only on the **spatial** and **temporal** dimensions of mobility.
- What about the **social** dimension?
 - \approx 30% of an individual's movements are taken for **social** purposes [8].
 - Individuals are more likely to visit a location if it has been recommended by a friend.

[8] Cho, E., Myers, S., Leskovec, J., 2011. Friendship and mobility: User movement in location-based social networks, pp. 1082–1090.

 STS-EPR (Spatial, Temporal, and Social EPR) is a mechanistic generative model that embeds mechanisms to capture the spatial, temporal and social aspects of mobility together.

- STS-EPR couples the advantages of two state-of-the-art generative models:
 - GeoSim [5]: it considers the social dimension, but its spatial and temporal realism is limited.
 - DITRAS [6]: it is able to capture the individual's circadian rhythm using a **Mobility Diary Generator** (MDG), as well as the spatial aspects of mobility, but it does not take into account the sociality of individuals.

[5] Toole, J., Herrera-Yague, C., Schneider, C., Gonzalez, M.C., 2015. Coupling human mobility and social ties. Journal of the Royal Society.
 [6] Pappalardo, L., Simini, F., 2017. Data-driven generation of spatio-temporal routines in human mobility. Data Mining and Knowledge Discovery, 32.

Location Vector [5]

- Mobility Similarity [5]
 - The mobility similarity (mob_{sim}) between two agents is defined as the cosine similarity of their location vectors.

• STS-EPR is composed of **four** phases:

STS-EPR: Initialization phase

The N synthetic individuals are connected in an undirected graph G.
 Each edge's weight represents the mobility similarity of the linked agents.

 The model assigns at each agent a mobility diary produced by the MDG.

 $<(ab_{0},t_{0}),(ab_{1},t_{1}),\ldots,(ab_{0},tj)\ldots>$

• The agents are assigned to a starting location *i* with a probability $p(i) \propto w_i$, where w_i is the **relevance** of location *i*.

STS-EPR: Initialization phase

 Each agent moves according to its mobility diary's entries at the time specified.

- In this phase the agent selects with which mechanisms to move.
- First, the agent selects between two competing spatial mechanisms: exploration and preferential return.

ho = 0.6 ho = 0.21S = number of unique visited locations

 Then, the agent selects between two competing social mechanisms: individual and social influence.

 $\alpha = 0.2$

 During the location selection phase, the agent decides which location will be the destination of its next displacement, according to the combinations of the spatial and social mechanisms picked.

- There are **four** possible combinations:
 - **1.** Individual Exploration
 - 2. Individual Return
 - **3.** Social Exploration
 - 4. Social Return

Individual – Exploration:

 The agent selects to visit an unvisited location without the influence of its social contacts.

If the agent is currently at location *i* it selects an **unvisited** location *j* with probability

$$p(j) \propto \frac{w_i \, w_j}{d_{ij}^2}$$

- d_{ij} is the distance between locations *i* and *j*.
- The relevance of a location k is w_k .

Individual – Return:

 The agent selects to return to a visited location without the influence of its social contacts.

 The agent, currently at location i, decides to return to location j with probability

 $p(j) \propto f_a(j)$

• Where $f_a(j)$ is defined as: $\frac{lv_a[j]}{\sum_{j=1}^{|L|} lv_a[i]}$

Social – {**Exploration**, **Return**}:

 The agent selects a visited (Return) or unvisited (Exploration) location to return with the influence of its social contacts.

The agent a selects a social contact; the probability of a social contact c to be selected is

 $p(c) \propto mob_{sim}(a, c)$

• After the social contact c il selected, the agents a selects **the proper location** i, according to the spatial mechanism picked, with probability $p(i) \propto f_c(i)$

STS-EPR: Action Correction phase

The set of possible locations an agent can reach is limited.

No location in social choices: if no location visited by a social contact *c* is feasible for the agent *a*, the action is corrected from Social – {Exploration, Return} to Individual – {Exploration, Return}

No new location to explore: when an agent decides to explore but it visited all the locations at least once we force the agent to make an Individual – Return.

Experiments

Experiments

- We validate **STS-EPR** using as baselines **DITRAS** and **GeoSim**.
- For each city, we **compare** the **synthetic** trajectories with **real** ones extracted from Foursquare's checkins [7].

• The similarity between the two sets of trajectories is computed with respect to the mobility patterns that characterize human mobility, and it is quantified with the **Kullback-Leibler divergence**.

[7] Yang, D., Qu, B., Yang, J., Cudre-Mauroux, P., 2019. Revisiting user mobility and social relationships in Ibsns: A hypergraph embedding approach, pp. 2147–2157

	Model	Δr	r _g	$f(r_i)$	Vl	Δ_t	t(h)	Eunc	mob _{sim}
London	GeoSim	0.5036	4.9381	0.0016	4.427	0.1962	0.281	8.5182	0.6097
		± 0.0075	± 0.0932	±0.0001	± 0.0069	± 0.0043	± 0.0003	± 0.0003	± 0.0079
	DITRAS	0.0221	0.1813	0.1094	0.1428	0.166	0.0119	3.8816	0.4347
		± 0.0022	±0.0239	±0.0	± 0.006	±0.0031	± 0.0004	±0.1897	± 0.0516
	STS-EPR	0.0108	0.4609	0.0097	0.1032	0.1626	0.0116	2.6749	0.2543
		±0.0016	± 0.233	± 0.0003	±0.0126	±0.0035	±0.001	±0.1169	±0.01
Tokyo	GeoSim	0.7257	4.8165	0.0002	3.0957	0.2354	0.2837	7.1242	0.0931
		± 0.002	± 0.0042	±0.0	± 0.0148	± 0.0003	± 0.0006	± 0.0593	± 0.0017
	DITRAS	0.0628	0.2417	0.1409	0.1101	0.2007	0.0074	5.0034	0.923
		± 0.0025	±0.0171	± 0.0	± 0.0048	±0.003	±0.0001	± 0.2708	± 0.0375
	STS-EPR	0.0485	0.2504	0.0108	0.0226	0.2001	0.0076	4.8717	0.014
		± 0.0013	± 0.0746	± 0.0002	±0.0019	±0.0024	± 0.0001	±0.2247	±0.0009
City	GeoSim	0.5947	5.3913	0.0071	3.6418	0.1973	0.18	8.0483	0.5879
		± 0.0062	± 0.0051	±0.0004	± 0.0069	± 0.0004	± 0.0005	± 0.0579	± 0.0149
Ľ.	DITRAS	0.0091	0.2987	0.193	0.1281	0.1665	0.0066	4.8881	0.5425
New York		±0.0006	±0.0359	± 0.0026	± 0.0044	±0.0032	±0.0003	± 0.0248	± 0.038
	STS-EPR	0.0188	0.3886	0.0318	0.0531	0.1705	0.0071	5.028	0.3066
		± 0.0015	± 0.0284	± 0.0008	±0.004	± 0.0047	± 0.0005	±1.1511	±0.0044

	Model	Δr	r _g	
	C Since	0.5036	4.9381	
-	GeoSim	± 0.0075	±0.0932	
ondon	DITRAS	0.0221	0.1813	
0	DIIKAS	± 0.0022	±0.0239	
Π	STS-EPR	0.0108	0.4609	
	515-LI K	±0.0016	±0.233	
	GeoSim	0.7257	4.8165	
	Geosini	± 0.002	± 0.0042	
Tokyo	DITRAS	0.0628	0.2417	
Tol	DIIKAS	± 0.0025	±0.0171	
	STS-EPR	0.0485	0.2504	
		±0.0013	± 0.0746	
y	GeoSim	0.5947	5.3913	
Cit	Geosini	± 0.0062	± 0.0051	
rk	DITRAS	0.0091	0.2987	
New York City		±0.0006	±0.0359	
lew	STS-EPR	0.0188	0.3886	
Z	515-EI K	±0.0015	±0.0284	

- GeoSim **cannot** reproduce neither Δr nor r_g
- STS-EPR generally better than DITRAS w.r.t. Δr
- DITRAS generally better than STS-EPR w.r.t. r_g

	Model	Δr	r _g	$f(r_i)$	Vl	Location Frequency Visits per Location		
London	GeoSim	0.5036 ±0.0075	4.9381 ±0.0932	0.0016 ±0.0001	4.427 ±0.0069	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	DITRAS	0.0221 ±0.0022	0.1813 ±0.0239	0.1094 ±0.0	0.1428 ±0.006	$ \begin{bmatrix} 10^{-1} & & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{bmatrix} \begin{bmatrix} 10^{-3} & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{bmatrix} \begin{bmatrix} 10^{-4} & & & \\ \hline \\$		
	STS-EPR	0.0108 ±0.0016	0.4609 ±0.233	0.0097 ±0.0003	0.1032 ±0.0126	10^{-2} 10^{-5} 10^{-6} 10^{-6} 10^{-6} 10^{-7} $10^{$		
	GeoSim	0.7257 ±0.002	4.8165 ±0.0042	0.0002 ±0.0	3.0957 ±0.0148	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Tokyo	DITRAS	0.0628 ±0.0025	0.2417 ±0.0171	0.1409 ±0.0	0.1101 ±0.0048	GeoSim is the best model w.r.t. $f(r_i)$ but cannot reproduce V_l		
	STS-EPR	0.0485 ±0.0013	0.2504 ±0.0746	0.0108 ±0.0002	0.0226 ±0.0019			
New York City	GeoSim	0.5947 ±0.0062	5.3913 ±0.0051	0.0071 ±0.0004	3.6418 ±0.0069	 STS-EPR is better than DITRAS 		
	DITRAS	0.0091 ±0.0006	0.2987 ±0.0359	0.193 ±0.0026	0.1281 ±0.0044	w.r.t. both $f(r_i)$ and V_l : the inclusion of the sociality produces better trajectories		
	STS-EPR	0.0188 ±0.0015	0.3886 ±0.0284	0.0318 ±0.0008	0.0531 ±0.004			

Open Source

scikit mobility

```
from skmob.models import sts_epr
STS_epr = sts.STS_epr()
start = pandas.to_datetime('22-03-2021')
end = pandas.to_datetime('25-03-2021')
social_graph, spatial_tessellation, diary = load_parameters()
syn_trajectories = STS_epr.generate(start, end, social_graph = social_graph,
spatial_tessellation = spatial_tessellation,
diary_generator = diary)
```

https://github.com/scikit-mobility

Conclusions

 STS-EPR can generate realistic trajectories for all the three dimensions, improving the state-of-theart models GeoSim and DITRAS

 The inclusion of the social dimension in STS-EPR help improving the realism with respect to the spatial and temporal measures.

 The model can be applied to different geographic regions without loss of generative capability.

Future directions

Use of Deep Learning methods (e.g., GANs)

External/Ausiliar information

Include a dynamic social graph

THANKS FOR THE ATTENTION!

juliano.cornacchia@phd.unipi.it

https://github.com/GiulianoCornacchia

References

- [1] Brockmann, D., Hufnagel, L., Geisel, T., 2006. The scaling laws of human travel. Nature 439, 462–5.
- [2] Gonzalez, M.C., Hidalgo, C., Barabasi, A.L., 2008. Understanding individual human mobility patterns. Nature 453, 779–82.
- [3] Barbosa-Filho, H., Barthelemy, M., Ghoshal, G., James, C., Lenormand, M., Louail, T., Menezes, R., Ramasco, J.J., Simini, F., Tomasini, M., 2018. Human mobility: Models and applications.
- [4] Montjoye, Y.A., Hidalgo, C., Verleysen, M., Blondel, V., 2013. Unique in the crowd: The privacy bounds of human mobility. Scientific reports 3, 1376.
- [5] Toole, J., Herrera-Yague, C., Schneider, C., Gonzalez, M.C., 2015. Coupling human mobility and social ties. Journal of the Royal Society, Interface / the Royal Society 12.
- [6] Pappalardo, L., Simini, F., 2017. Data-driven generation of spatio-temporal routines in human mobility. Data Mining and Knowledge Discovery, 32.
- [7] Yang, D., Qu, B., Yang, J., Cudre-Mauroux, P., 2019. Revisiting user mobility and social relationships in lbsns: A hypergraph embedding approach, pp. 2147–2157
- [8] Cho, E., Myers, S., Leskovec, J., 2011. Friendship and mobility: User movement in location-based social networks, pp. 1082– 1090.